4,478 research outputs found

    Plasmon-phonon coupling in large-area graphene dot and antidot arrays

    Full text link
    Nanostructured graphene on SiO2 substrates pave the way for enhanced light-matter interactions and explorations of strong plasmon-phonon hybridization in the mid-infrared regime. Unprecedented large-area graphene nanodot and antidot optical arrays are fabricated by nanosphere lithography, with structural control down to the sub-100 nanometer regime. The interaction between graphene plasmon modes and the substrate phonons is experimentally demonstrated and structural control is used to map out the hybridization of plasmons and phonons, showing coupling energies of the order 20 meV. Our findings are further supported by theoretical calculations and numerical simulations.Comment: 7 pages including 6 figures. Supporting information is available upon request to author

    Room Temperature InP DFB Laser Array Directly Grown on (001) Silicon

    Full text link
    Fully exploiting the silicon photonics platform requires a fundamentally new approach to realize high-performance laser sources that can be integrated directly using wafer-scale fabrication methods. Direct band gap III-V semiconductors allow efficient light generation but the large mismatch in lattice constant, thermal expansion and crystal polarity makes their epitaxial growth directly on silicon extremely complex. Here, using a selective area growth technique in confined regions, we surpass this fundamental limit and demonstrate an optically pumped InP-based distributed feedback (DFB) laser array grown on (001)-Silicon operating at room temperature and suitable for wavelength-division-multiplexing applications. The novel epitaxial technology suppresses threading dislocations and anti-phase boundaries to a less than 20nm thick layer not affecting the device performance. Using an in-plane laser cavity defined by standard top-down lithographic patterning together with a high yield and high uniformity provides scalability and a straightforward path towards cost-effective co-integration with photonic circuits and III-V FINFET logic

    Plasma Nanoscience: from Nano-Solids in Plasmas to Nano-Plasmas in Solids

    Full text link
    The unique plasma-specific features and physical phenomena in the organization of nanoscale solid-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter, to nano-plasma effects and nano-plasmas of different states of matter.Comment: This is an essential interdisciplinary reference which can be used by both advanced and early career researchers as well as in undergraduate teaching and postgraduate research trainin

    Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity

    Get PDF
    The conserved Swift-Hohenberg equation with cubic nonlinearity provides the simplest microscopic description of the thermodynamic transition from a fluid state to a crystalline state. The resulting phase field crystal model describes a variety of spatially localized structures, in addition to different spatially extended periodic structures. The location of these structures in the temperature versus mean order parameter plane is determined using a combination of numerical continuation in one dimension and direct numerical simulation in two and three dimensions. Localized states are found in the region of thermodynamic coexistence between the homogeneous and structured phases, and may lie outside of the binodal for these states. The results are related to the phenomenon of slanted snaking but take the form of standard homoclinic snaking when the mean order parameter is plotted as a function of the chemical potential, and are expected to carry over to related models with a conserved order parameter.Comment: 40 pages, 13 figure

    Demagnetization Borne Microscale Skyrmions

    Full text link
    Magnetic systems are an exciting realm of study that is being explored on smaller and smaller scales. One extremely interesting magnetic state that has gained momentum in recent years is the skyrmionic state. It is characterized by a vortex where the edge magnetic moments point opposite to the core. Although skyrmions have many possible realizations, in practice, creating them in a lab is a difficult task to accomplish. In this work, new methods for skyrmion generation and customization are suggested. Skyrmionic behavior was numerically observed in minimally customized simulations of spheres, hemisphere, ellipsoids, and hemi-ellipsoids, for typ- ical Cobalt parameters, in a range from approximately 40 nm to 120 nm in diameter simply by applying a field
    • …
    corecore