942 research outputs found

    Coupled flight dynamics and CFD - demonstration for helicopters in shipborne environment

    Get PDF
    The development of high-performance computing and computational fluid dynamics methods have evolved to the point where it is possible to simulate complete helicopter configurations with good accuracy. Computational fluid dynamics methods have also been applied to problems such as rotor/fuselage and main/tail rotor interactions, performance studies in hover and forward flight, rotor design, and so on. The GOAHEAD project is a good example of a coordinated effort to validate computational fluid dynamics for complex helicopter configurations. Nevertheless, current efforts are limited to steady flight and focus mainly on expanding the edges of the flight envelope. The present work tackles the problem of simulating manoeuvring flight in a computational fluid dynamics environment by integrating a moving grid method and the helicopter flight mechanics solver with computational fluid dynamics. After a discussion of previous works carried out on the subject and a description of the methods used, validation of the computational fluid dynamics for ship airwake flow and rotorcraft flight at low advance ratio are presented. Finally, the results obtained for manoeuvring flight cases are presented and discussed

    Main rotor-tail rotor intraction and its implications for helicopter directional control

    Get PDF
    Aerodynamic interference between the main and tail rotor can have a strong negative influence on the flight mechanics of a conventional helicopter. Significant unsteadiness in the tail rotor loading is encountered under certain flight conditions, but the character of the unsteadiness can depend on the direction of rotation of the tail rotor. Numerical simulations, using Brown's vorticity transport model, of the aerodynamic interaction between the main and tail rotors of a helicopter are presented for a range of forward and lateral flight trajectories. Distinct differences are predicted in the behavior of the system in left and right sideward flight that are consistent with flight experience that the greatest fluctuations in loading or control input are required in left sideways flight (for a counterclockwise rotating main rotor). These fluctuations are generally more extreme for a system with tail rotor rotating top-forward than top-aft. Differences are also exposed in the character of the lateral excitation of the system as forward flight speed is varied. The observed behavior appears to originate in the disruption of the tail rotor wake that is induced by its entrainment into the wake of the main rotor. The extent of the disruption is dependent on flight condition, and the unsteadiness of the process depends on the direction of rotation of the tail rotor. In intermediate-speed forward flight and right sideward flight, the free stream delays the entrainment of the tail rotor wake far enough downstream for the perturbations to the rotor loading to be slight. Conversely, in left sideward and quartering flight, the free stream confines the entrainment process close to the rotors, where it causes significant unsteadiness in the loads produced by the system

    A comparison of coaxial and conventional rotor performance

    Get PDF
    The performance of a coaxial rotor in hover, in steady forward flight, and in level, coordinated turns is contrasted with that of an equivalent, conventional rotor with the same overall solidity, number of blades, and blade aerodynamic properties. Brown's vorticity transport model is used to calculate the profile, induced, and parasite contributions to the overall power consumed by the two systems, and the highly resolved representation of the rotor wake that is produced by the model is used to relate the observed differences in the performance of the two systems to the structures of their respective wakes. In all flight conditions, all else being equal, the coaxial system requires less induced power than the conventional system. In hover, the conventional rotor consumes increasingly more induced power than the coaxial rotor as thrust is increased. In forward flight, the relative advantage of the coaxial configuration is particularly evident at pretransitional advance ratios. In turning flight, the benefits of the coaxial rotor are seen at all load factors. The beneficial properties of the coaxial rotor in forward flight and maneuver, as far as induced power is concerned, are a subtle effect of rotor-wake interaction and result principally from differences between the two types of rotor in the character and strength of the localized interaction between the developing supervortices and the highly loaded blade-tips at the lateral extremities of the rotor. In hover, the increased axial convection rate of the tip vortices appears to result in a favorable redistribution of the loading slightly inboard of the tip of the upper rotor of the coaxial system

    A rational approach to comparing the performance of coaxial and conventional rotors

    Get PDF
    The merit, in terms of its efficiency and performance, of the twin, contrarotating coaxial rotor configuration over the more conventional single rotor system has long been a point of contention. Previously published comparisons yield seemingly inconsistent and conflicting conclusions. In this paper, the basis for a fair, like-for-like comparison of the performance of coaxial and single rotor systems is discussed. A comparison between experimentally measured data and numerical predictions of rotor performance obtained using the vorticity transport model shows that a computational approach can be used reliably to decompose the power consumption into induced and profile constituents. These comparisons show that a somewhat stronger similarity in geometry needs to be enforced between the two types of rotor system than previously suggested in order that the systems be directly comparable. If the equivalent single rotor system is constructed to have the same disk area, blade geometry, and total number of blades as that of the coaxial rotor, then the geometric differences between the two systems are confined to the defining characteristics of the two types of rotor system, in other words to the vertical separation between the rotor blades and their relative direction of rotation. The differences in aerodynamic performance between a coaxial rotor and an equivalent single rotor defined in this way then arise solely as a result of the differences in the detailed interaction between the blades and their wakes that arise within the two types of system. Using this form of comparison, the articulated coaxial system is shown to consume marginally less induced power than the equivalent single rotor system. The difference is small enough, however, to be obscured if the profile drag of the blades is overtly sensitive to operating condition, as for instance might be the case at low Reynolds number

    Computational Study of NASA's Quadrotor Urban Air Taxi Concept

    Get PDF
    High-fidelity computational fluid dynamics simulations have been carried out in order to analyze NASA's quadrotor urban air taxi concept for urban air mobility, also know as on-demand mobility applications. High-order accurate schemes, dual-time stepping, and the delayed detached-eddy simulation model have been employed. The ow solver has been loosely coupled with a rotorcraft comprehensive analysis code. The vehicle simulated is a six-passenger quadrotor for air taxi operations. A study of power reduction as a function of the rear-rotor to front-rotors vertical separation has been performed, for a quad-rotor without the airframe, in cruise flight conditions. Then, the quadrotor without the airframe has been simulated in hover. The airloads and wake geometries are analyzed. To finish the study the complete quadrotor vehicle is presented. NASA's quadrotor air taxi concept is one of the many concepts being developed by NASA in support of aircraft development for vertical take-o and landing air taxi operations

    Interactional aerodynamics and acoustics of a hingeless coaxial helicopter with an auxiliary propeller in forward flight

    Get PDF
    The aerodynamics and acoustics of a generic coaxial helicopter with a stiff main rotor system and a tail- mounted propulsor are investigated using Brown's Vorticity Transport Model. In particular, the model is used to capture the aerodynamic interactions that arise between the various components of the configuration. By comparing the aerodynamics of the full configuration of the helicopter to the aerodynamics of various combinations of its sub-components, the influence of these aerodynamic interactions on the behaviour of the system can be isolated. Many of the interactions follow a simple relationship between cause and effect. For instance, ingestion of the main rotor wake produces a direct effect on the unsteadiness in the thrust produced by the propulsor. The causal relationship for other interdependencies within the system are found to be more obscure. For instance, a dependence of the acoustic signature of the aircraft on the tailplane design originates in the changes in loading on the main rotor that arise from the requirement to trim the load on the tailplane that is induced by its interaction with the main rotor wake. The traditional approach to the analysis of interactional effects on the performance of the helicopter relies on characterising the system in terms of a network of possible interactions between the separate components of its configuration. This approach, although conceptually appealing, may obscure the closed-loop nature of some of the aerodynamic interactions within the helicopter system. It is suggested that modern numerical simulation techniques may be ready to supplant any overt reliance on this reductionist type approach and hence may help to forestall future repetition of the long history of unforeseen, interaction-induced dynamic problems that have arisen in various new helicopter designs

    Numerical Simulations on the PSP Rotor Using HMB3

    Get PDF
    This work presents CFD analyses of the isolated Pressure Sensitive Paint (PSP) model rotor blade in hover and forward flight using the structured multi-block CFD solver of Glasgow University. In hover, two blade-tip Mach numbers (0.585 and 0.65) were simulated for a range of blade pitch angles using fully-turbulent flow and the k-ω SST model. Results at blade-tip Mach number of 0.585 showed a fair agreement with experimental Figure of Merit and surface pressure coefficients obtained in the Rotor Test Cell (RTC) at NASA Langley Research Center. Comparisons are presented at blade-tip Mach number of 0.65 in terms of integral blade loads, surface pressure coefficients and position of the tip-vortex cores with published numerical data. Finally, the flow around the PSP rotor in forward flight was also computed at medium thrust (CT =0.006) and results were compared with published experimental data

    Forces on Obstacles in Rotor Wake – A GARTEUR Action Group

    Get PDF
    The paper describes the objectives and the structure of the GARTEUR Action Group HC/AG-22 project which deals with the basic research about the forces acting on obstacles when immersed in rotor wakes. The motivation started from the observation that there was a lack of experimental databases including the evaluation of the forces on obstacles in rotor wakes; and of both numerical and experimental investigations of the rotor downwash effects at medium-to-high separation distances from the rotor, in presence or without sling load. The four research centres: CIRA (I); DLR (D); NLR (NL); ONERA (F); and three universities: NTUA (GR); Politecnico di Milano (I); University of Glasgow (UK) created a team for the promotion of activities that could contribute to fill these gaps. In particular, both numerical and experimental investigations were proposed by the team to study, primarily, the effects of the confined area geometry on a hovering helicopter rotor, and, secondarily, the downwash and its influence on the forces acting on a load, loose or slung, at low to high separation distances from the rotor disc. The following activities were planned: a) application and possible improvement of computational tools for the study of helicopter rotor wake interactions with obstacles; b) set-up and performance of four cost-effective wind tunnel test campaigns aimed at producing a valuable experimental database for the validation of the numerical methodologies applied; c) final validation of the numerical methodologies. The project started in November 2014 and has a duration of three years

    Numerical modelling of the aerodynamic interference between helicopter and ground obstacles

    Get PDF
    Helicopters are frequently operating in confined areas where the complex flow fields that develop in windy conditions may result in dangerous situations. Tools to analyse the interaction between rotorcraft wakes and ground obstacles are therefore essential. This work, carried out within the activity of the GARTEUR Action Group 22 on “Forces on Obstacles in Rotor Wake”, attempts to assess numerical models for this problem. In particular, a helicopter operating in hover above a building as well as in its wake, one main rotor diameter above the ground, has been analysed. Recent tests conducted at Politecnico di Milano provide a basis for comparison with unsteady simulations performed, with and without wind. The helicopter rotor has been modelled using steady and unsteady actuator disk methods, as well as with fully resolved blade simulations. The results identify the most efficient aerodynamic model that captures the wakes interaction, so that real-time coupled simulations can be made possible. Previous studies have already proved that the wake superposition technique cannot guarantee accurate results if the helicopter is close to the obstacle. The validity of that conclusion has been further investigated in this work to determine the minimum distance between helicopter and building at which minimal wake interference occurs

    Comprehensive rotorcraft analysis methods

    Get PDF
    The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS)
    • 

    corecore