1,599 research outputs found

    Residual Stress in Wheels: Comparison of Neutron Diffraction and Ultrasonic Methods, with Trends in RCF

    Get PDF
    The critical damage mechanism on many GB passenger train wheels is Rolling Contact Fatigue (RCF) cracking in the rim. Evidence from field observations suggests that RCF damage occurs much more quickly as the wheelsets near the end of their life. Wheel manufacturing processes induce a compressive hoop stress in the wheel rim; variations in residual stress through the life of a wheel may influence the observed RCF damage rates. This paper describes experiments to measure residual stresses in new and used wheel rims to identify whether this could be a significant factor, and compares the findings from neutron diffraction and ultrasonic birefringence methods. The scope goes beyond previous applications of neutron diffraction to railway wheels and identifies key considerations for future testing. Assuming that the as-manufactured stress distribution was similar for all three wheels tested, it is found that the stresses are redistributed within the wheel rim during its life as material is removed and plastic flow occurs. However, the hoop stress near the running surface remains compressive and may not have a large influence on the RCF damage rates

    Modeling of phase transformations and cyclic plasticity in pearlitic steels

    Get PDF
    The low rolling resistance in railway transportation is a key factor for its high efficiency, but it comes at the price of very high contact pressure between the rail and wheel. Due to the high stresses and the large number of load cycles during railway operation, both the rail and the wheel can be susceptible to fatigue crack initiation and propagation. Furthermore, thermal loads due to frictional heating can generate high temperature in the material surface layers leading to gradual or drastic changes in material behavior. Other events that may cause such high temperatures include welding or grinding of the rail. In this thesis, a modeling framework for phase transformations and cyclic plasticity of pearlitic steel is developed. The framework allows for modeling of the thermo-mechanical behavior of the individual phases. The implemented phase transformation kinetics in heating events include austenitization and possible tempering of martensite, and in cooling events the formation of pearlite, bainite, and martensite. Cyclic plasticity is incorporated in the model by using a Chaboche plasticity model with a von Mises yield function, non-linear isotropic and kinematic hardening. The capability of the modeling framework is demonstrated by studying the development of residual stresses during a double wheel flat scenario on the tread of a railway wheel followed by rolling contact loadings.Further, the modeling framework is extended and improved by accounting for transformation induced plasticity (TRIP). To further improve the model, the influence of the choice of homogenization method is evaluated. Four methods are considered; iso-strain, iso-stress, self-consistent method and the linear mixture rule. These show different behavior during the multi-phase stages in simulations of a laser heated rail surface, which in turn affects the residual stress states. Although the conclusions are not entirely clear, comparison with experimental data indicates that the iso-strain and the self-consistent method are the most promising, with a slight advantage to the latter.The thesis also presents an attempt at using the developed material model and the linear mixture rule in a simple butt-weld simulation, which can be seen as a first step towards simulation of repair welding of rails. The simulation includes a moving heat source and continuous addition of filler material. Preliminary results show that residual stress fields found for similar examples in the literature can be reproduced. Therefore, it is believed that the simulation methodologies developed in Papers A and B can be used as a basis for future developments towards simulations of repair welding of rails

    Review on the prediction of residual stress in welded steel components

    Get PDF
    Residual stress after welding has negative effects on the service life of welded steel components or structures. This work reviews three most commonly used methods for predicting residual stress, namely, empirical, semi-empirical and process simulation methods. Basic principles adopted by these methods are introduced. The features and limitations of each method are discussed as well. The empirical method is the most practical but its accuracy relies heavily on experiments. Mechanical theories are employed in the semi-empirical method, while other aspects, such as temperature variation and phase transformation, are simply ignored. The process simulation method has been widely used due to its capability of handling with large and complex components. To improve its accuracy and efficiency, several improvements need to be done for each simulation aspect of this method

    Flow Conditioning in Heat Treatment by Gas and Spray Quenching

    Get PDF
    Gas quenching has been known for centuries as a convenient, affordable method to heat treat ferrous alloys. Heated parts are taken out of the furnace and quenched at ambient pressure, casually using a blower to increase the heat exchange. Technical developments in the metal industry, over the last decades, have seen a constant improvement of the ratio of heat exchange, e.g. by using pressured chambers, specific blowers, and a variety of gases and gas mixtures. The current gas quenching technologies are adapted to heat treatable metals found in the automotive industry, requesting a minimum heat exchange ratio, also depending on the part geometry. Little has been however investigated concerning the quenched batch, defined as the arrangement of the heated parts onto a single- or multiple-layer charge carrier. The present work, through a combination of experimental and numerical techniques, provides guidelines to adapt the batch to a specific gas flow pattern (spatial fitting), and to adapt the gas flow pattern to the batch structure (temporal fitting). Measurement techniques have been developed to assess the flow patterns inside industrial quenching chambers. Evaluated flow structures have been converted to numerical boundary conditions for extended simulations tools. Simulations have helped implementing technical solutions for flow correction in industrial gas quenching chambers. Furthermore, simulations have served the design of batches of various geometries, to improve both quenching homogeneity and intensity. Both experimental and numerical results confirmed the advantages of gas quenching for the homogeneous heat treatment of automotive steel grades, and demonstrated the potential of various flow correcting devices, such as perforated plates and cylindrical flow ducts. Heat treatment gas and spray quenching has also been integrated into the forging and the turning process chains of single components, successfully optimizing the lean process flow (automation, quality, and time), for various high-performance materials and part geometries

    On fatigue life prediction of Al-alloy 2024 plates in riveted joints

    Get PDF
    The purpose of this paper is to numerically investigate the fatigue life and the fatigue crack growth path of 2024 aluminum plate riveted joints. For this purpose, according to field observations, the parameters affecting fatigue life are obtained. Relevant geometric parameters such as rivet shank length, hole diameter and dimensional tolerances, as well as the location pattern of the rivets and the material of the rivet joints are studied. In this study, modeling is performed to calculate the equivalent plastic strain using the finite element method. For this purpose, a three-dimensional elastoplastic model is used for simulation. The information obtained from the finite element method in this study made it possible to place the rivets in this type of joint for use in high safety structures such as the aerospace industry. Given the importance of the problem of crack growth in 2024 aluminum plates, having the geometrical and physical parameters of the problem, the goal is to achieve the exact path of crack growth and fatigue life of riveted joints. Fatigue crack growth simulation is performed on the samples using the boundary element method. The stress intensity factor for different loading modes is determined using the boundary element method. The results showed that the geometric parameters and the rivet material have a significant effect on fatigue cracking in aluminum plates

    Advanced Technologies for the Optimization of Internal Combustion Engines

    Get PDF
    This Special Issue puts together recent findings in advanced technologies for the optimization of internal combustion engines in order to help the scientific community address the efforts towards the development of higher-power engines with lower fuel consumption and pollutant emissions

    Investigation of the Quenching Characteristics of Steel Components by Static and Dynamic Analyses

    Get PDF
    Machine components made of steel are subjected to heat treatment processes for improving mechanical properties in order to enhance product life and is usually done by quenching. During quenching, heat is transferred rapidly from the hot metal component to the quenchant and that rapid temperature drop induces phase transformation in the metal component. As a result, quenching generates some residual stresses and deformations in the material. Therefore, to estimate the temperature distribution, residual stress, and deformation computationally; three-dimensional finite element models are developed for two different steel components – a spur gear and a circular tube by a static and a dynamic quenching analyses, respectively. The time-varying nodal temperature distributions in both models are observed and the critical regions are identified. The variations of stress and deformation after quenching along different pathways for both models are studied. The convergence for both models is checked and validations of the models are done

    Optimization of furnace residence time and ingots positioning during the heat treatment process of large size forged ingots

    Get PDF
    High-strength large size forgings which are widely used in the energy and transportation industries (e.g., turbine shaft, landing gears etc.) acquire significant mechanical properties (e.g., hardness) through a sequence of heat treatment processes, called Quench and Temper (Q&T). The heating process (tempering) that takes place inside gas-fired furnaces has a direct impact on the final properties of the product due to several major microstructural changes taking place at this step. Therefore, material properties are usually optimized by controlling the tempering process parameters such as time and temperature. A non-uniform temperature distribution around parts, as a result of thermal interactions inside the furnace or loading pattern, may result in the parts property variations from one end to another, changes in microstructure or even cracking. On the other hand, improvement of large products residence time inside the heat treatment furnace can minimize energy consumption and avoid undesirable microstructural changes. However, at the present time, the industrial production is mainly based on available empirical correlations which are costly and not always reliable. Accurate time-dependent temperature prediction of the large size forgings within gas-fired heat treatment furnaces requires a comprehensive quantitative examination of the heating process and an in-depth understanding of complex conjugate thermal interactions inside the furnace. Limitations in analytical studies and complexity and cost of experimentations have made numerical simulations such as computational fluid dynamics (CFD), effective methods in this field of study. However, among the rarely found studies on gas-fired furnaces, smallscale furnaces or those with shorter operation times were mainly considered (using different simplifications like steady-state calculations) because of complexity of the phenomena and large calculation times. Subsequently, there are very few studies on the improvement of the loading patterns of large-size steel parts inside the gas-fired furnaces and their relevant residence time optimization. Moreover, the limitation and strength of different numerical approaches to calculate thermal interactions in the turbulent reactive flow of the large size gas-fired batch type furnaces were addressed by few researchers in the literature. In this regard, the main objective of the present thesis is to provide a comprehensive quantitative analysis of transient heating and an understanding of thermal interactions inside the furnace so as to optimize the residence time and temperature uniformity of large size products during the heat treatment process. To attain this objective, the following milestones are pursued. The first part of this study provides a comprehensive unsteady analysis of large size forgings heating characteristics in a gas-fired heat treatment furnace employing experimentally measured temperatures and CFD simulations. A three-dimensional CFD model of the gasfired furnace, including heat treating chamber and high momentum natural gas burners, was generated. The interactions between heat and fluid flow consisting of turbulence, combustion and radiation were simultaneously considered using the k -ε , EDM and DO models, respectively. The applicability of S2S radiation model to quantify the effect of participating medium and radiation view factor in the radiation heat transfer was also assessed. Temperature measurements at several locations of an instrumented large size forged block and within the heating chamber of the furnace were performed for experimental analysis of the heating process and validation of the CFD model. Good agreement with a maximum deviation of about 7% was obtained between the numerical predictions and the experimental measurements. The results showed that despite the temperature uniformity of the unloaded furnace, each surface of the product experienced different heating rates after loading (single loading) resulting in temperature differences of up to 200 K. Analysis of the results also revealed the reliability of the S2S model and highlighted the importance of radiation view factor for the optimization purposes in this application. Findings were correlated with the geometry of the furnace, formation of vortical structures and fluid flow circulations around the workpiece. The experimental data and CFD model predictions could directly be employed for optimization of the heat treatment process of large size steel components. The second part of this study aims to determine the effect of loading pattern (in the multiple loading configurations) on the temperature distribution of large size forgings during the heat treatment process within a gas-fired furnace to attain more temperature uniformity and consequently homogenous mechanical properties. This part also focuses on the improvement of residence time of large size forged ingots within a tempering furnace proposing a novel hybrid methodology combining CFD numerical simulations and a series of experimental measurements with high-resolution dilatometer. Transient 3D CFD simulations validated by experimental temperature measurements were employed to assess the impact of loading patterns and skids on the temperature uniformity and residence time of heavy forgings within the furnace. Comprehensive transient analysis of forgings heating characteristics (including heat transfer modes analysis) at four different loading patterns allowed quantifying the impact of skids and their dimensions on the temperature distribution uniformity as well as products residence time. Results showed that temperature non-uniformities of up to 331 K persist for non-optimum conventional loading pattern. The positive influence of skids and spacers applications was approved and quantified using the developed approach. It was possible to reduce the identified non-uniformities of up to 32 % through changing the loading pattern inside the heat treatment furnace. This hybrid approach allowed to determine an optimum residence time of large size slabs improving by almost 15.5 % in comparison with the conventional non-optimized configuration. This approach was validated and it could be directly applied to the optimization of different heat treatment cycles of large size forgings. The third part of the study addresses the details of the numerical simulation of heat treatment process of large size forgings within real scale gas-fired furnaces. Specifically, assessment of chemical equilibrium non-premix combustion model for accurate temperature prediction of heavy forgings, as well as performance of six different RANS based turbulence models for predictions of turbulent phenomenon were discussed in this context. In this regard, thermal interactions at different locations of the forged block as well as critical regions such as burner area, stagnation and wake region were performed using a one-third periodic 3D model of the furnace and validated by experimental measurements. Results showed that the one-third periodic model with chemical equilibrium non-premix combustion is reliable for the thermal analysis of the heat treatment process with a maximum deviation of about 3% with respect to the experimental measurements. It was also revealed that the choice of the turbulence model has a significant effect on the prediction of combustion and heat transfer around the block. Prediction of ɛ/k ratio by different turbulence models showed a significant relation to the turbulent combustion (such as burner flame length) and block temperature predictions, around the stagnation region. Standard and realizable k - ɛ models, due to an unrealistic over prediction of turbulence kinetic energy (under-prediction of ɛ/k ratio), resulted in shorter flame length and under-prediction on the temperature of the forged block around the stagnation region; While, SST k - w model showed reasonable predictions in this region. RSM model was found as the most reliable turbulence model compared to the experimental measurements. Meanwhile, realizable k − ɛ model apart from some under-prediction on the stagnation region and flame length could effectively predict the overall temperature of the heavy forgings with reasonable accuracy with respect to the experimental data and RSM predictions
    • …
    corecore