783 research outputs found

    Parametrical modeling and design optimization of blood plasma separation device with microchannel mechanism

    Get PDF
    This paper presents an analysis of biofluid behavior in a T-shaped microchannel device and a design optimization for improved biofluid performance in terms of particle liquid separation. The biofluid is modeled with single phase shear rate non-Newtonian flow with blood property. The separation of red blood cell from plasma is evident based on biofluid distribution in the microchannels against various relevant effects and findings, including Zweifach-Fung bifurcation law, Fahraeus effect, Fahraeus-Lindqvist effect and cell free phenomenon. The modeling with the initial device shows that this T-microchannel device can separate red blood cell from plasma but the separation efficiency among different bifurcations varies largely. In accordance with the imbalanced performance, a design optimization is conducted. This includes implementing a series of simulations to investigate the effect of the lengths of the main and branch channels to biofluid behavior and searching an improved design with optimal separation performance. It is found that changing relative lengths of branch channels is effective to both uniformity of flow rate ratio among bifurcations and reduction of difference of the flow velocities between the branch channels, whereas extending the length of the main channel from bifurcation region is only effective for uniformity of flow rate ratio

    Effect of fluid dynamics and device mechanism on biofluid behaviour in microchannel systems: modelling biofluids in a microchannel biochip separator

    Get PDF
    Biofluid behaviour in microchannel systems is investigated in this paper through the modelling of a microfluidic biochip developed for the separation of blood plasma. Based on particular assumptions, the effects of some mechanical features of the microchannels on behaviour of the biofluid are explored. These include microchannel, constriction, bending channel, bifurcation as well as channel length ratio between the main and side channels. The key characteristics and effects of the microfluidic dynamics are discussed in terms of separation efficiency of the red blood cells with respect to the rest of the medium. The effects include the Fahraeus and Fahraeus-Lindqvist effects, the Zweifach-Fung bifurcation law, the cell-free layer phenomenon. The characteristics of the microfluid dynamics include the properties of the laminar flow as well as particle lateral or spinning trajectories. In this paper the fluid is modelled as a single-phase flow assuming either Newtonian or Non-Newtonian behaviours to investigate the effect of the viscosity on flow and separation efficiency. It is found that, for a flow rate controlled Newtonian flow system, viscosity and outlet pressure have little effect on velocity distribution. When the fluid is assumed to be Non-Newtonian more fluid is separated than observed in the Newtonian case, leading to reduction of the flow rate ratio between the main and side channels as well as the system pressure as a whole

    Analysis and design optimization of an integrated micropump-micromixer operated for bio-MEMS applications

    Get PDF
    A generic microfluidic system composed by two single chamber valveless micropumps connected to a simple T-type channel intersection is examined numerically. The characteristics of a feasible valveless micropump have been used in the design, where efficient mixing is produced due to the pulsating flow generated by the micropumps. The advantages of using time pulsing inlet flows for enhancing mixing in channels have been harnessed through the activation of intrinsic characteristics of the pumps required to achieve the periodic flows. A parametric study is carried out on this microfluidic system using Computational Fluids Dynamics (CFD) on a design space defined by a Design-of-Experiments (DOE) technique. With this approach, the frequency f and the phase difference of the periodic fluid velocities (operation parameters) and the angle formed by the inlet channels at the intersection (geometric parameter) are used as design parameters, whereas mixing quality, pressure drop and maximum shear strain rate in the channel are the performance parameters. The study identifies design features for which the pressure drop and shear strain in the channel are reduced whereas the mixing quality is increased. The proposed microfluidic system achieves high mixing quality with performance parameters that enable manipulation of biological fluids in microchannels.Peer reviewedFinal Accepted Versio

    Conference Program

    Get PDF

    Adomian decomposition solution for propulsion of dissipative magnetic Jeffrey biofluid in a ciliated channel containing a porous medium with forced convection heat transfer

    Get PDF
    Physiological transport phenomena often feature ciliated internal walls. Heat, momentum and multi-species mass transfer may arise and additionally non-Newtonian biofluid characteristics are common in smaller vessels. Blood (containing hemoglobin) or other physiological fluids containing ionic constituents in the human body respond to magnetic body forces when subjected to external (extra-corporeal) magnetic fields. Inspired by such applications, in the present work we consider the forced convective flow of an electrically-conducting viscoelastic physiological fluid through a ciliated channel under the action of a transverse magnetic field. The flow is generated by a metachronal wave formed by the tips of cilia which move to and fro in a synchronized fashion. The presence of deposits (fats, cholesterol etc) in the channel is mimicked with a Darcy porous medium drag force model. The two-dimensional unsteady momentum equation and energy equation are simplified with a stream function and small Reynolds' number approximation. The effect of energy loss is simulated via the inclusion of viscous dissipation in the energy conservation (heat) equation. The non-dimensional, transformed moving boundary value problem is solved with appropriate wall conditions via the semi-numerical Adomian decomposition method (ADM). The velocity, temperature and pressure distribution are computed in the form of infinite series constructed by ADM and numerically evaluated in a symbolic software (MATHEMATICA). Streamline distributions are also presented. The influence of Hartmann number (magnetic parameter), Jeffrey first and second viscoelastic parameters, permeability parameter (modified Darcy number), and Brinkman number (viscous heating parameter) on velocity, temperature, pressure gradient and bolus dynamics is visualized graphically. The flow is decelerated with increasing with increasing Hartmann number and Jeffery first parameter in the core flow whereas it is accelerated in the vicinity of the walls. Increasing permeability and Jeffery second parameter are observed to accelerate the core flow and decelerate the peripheral flow near the ciliated walls. Increasing Hartmann number elevates pressure gradient whereas it is reduced with permeability parameter. Temperatures are elevated with increasing magnetic parameter, Brinkman number and Jeffery second parameter. Increasing magnetic field is also observed to reduce the quantity of trapped boluses. Increasing permeability parameter suppresses streamline amplitudes. Both the magnitude and quantity of trapped boluses is elevated with an increase in both first and second Jeffery parameters

    Effects of coagulation on the two-phase peristaltic pumping of magnetized Prandtl biofluid through an endoscopic annular geometry containing a porous medium

    Get PDF
    In this article, motivated by more accurate simulation of electromagnetic blood flow in annular vessel geometries in intravascular thrombosis, a mathematical model is developed for elucidating the effects of coagulation (i.e. a blood clot) on peristaltically induced motion of an electrically-conducting (magnetized) Prandtl fluid physiological suspension through a non-uniform annulus containing a homogenous porous medium. Magnetohydrodynamics is included owing to the presence of iron in the hemoglobin molecule and also the presence of ions in real blood. Hall current which generates a secondary (cross) flow at stronger magnetic field is also considered in the present study. A small annular tube (endoscopic) with sinusoidal peristaltic waves traveling along the inner and outer walls at constant velocity with a clot present is analyzed. The governing conservation equations which comprise the continuity and momentum equations for the fluid phase and particle phase are simplified under lubrication approximations (long wavelength and creeping flow conditions). The moving boundary value problem is normalized and solved analytically (with appropriate wall conditions) for the fluid phase and particle phase using the homotopy perturbation method (HPM) with MATHEMATICA software. Validation is conducted with MAPLE numerical quadrature. A parametric study of the influence of clot height (δ), particle volume fraction (C), Prandtl fluid material parameters (α, β), Hartmann number (M), Hall parameter (m), permeability parameter (k), peristaltic wave amplitude (φ) and wave number (δ̅ ) on pressure difference and wall shear (friction forces) is included. Pressure rise is elevated with clot height, medium permeability and Prandtl rheological material parameters whereas it is reduced with increasing particle volume fraction and magnetic Hartmann number. Friction forces on the outer and inner tubes of the endoscope annulus are enhanced with clot height and particle volume fraction whereas they are decreased with Prandtl rheological material parameters, Hall parameter and permeability parameter. The simulations provide a good benchmark for more general computational fluid dynamics studies of magnetic endoscopic multi-phase peristaltic pumping

    Peristaltic transport of bi-viscosity fluids through a curved tube : a mathematical model for intestinal flow

    Get PDF
    The human intestinal tract is a long curved tube constituting the final section of the digestive system in which nutrients and water are mostly absorbed. Motivated by the dynamics of chyme in the intestine, a mathematical model is developed to simulate the associated transport phenomena via peristaltic transport. Rheology of chyme is modelled using the Nakamura-Sawada bi-viscosity non-Newtonian formulation. The intestinal tract is considered as a curved tube geometric model. Low Reynolds number (creeping hydrodynamics) and long wavelength approximations are taken into consideration.Analytical solutions of the moving boundary value problem are derived for velocity field,pressure gradient and pressure rise. Streamline flow visualization is achieved with Mathematica symbolic software. Peristaltic pumping phenomenon and trapping of the bolus are also examined. The influence of curvature parameter, apparent viscosity coefficient (rheological parameter) and volumetric flow rate on flow characteristics is described. Validation of analytical solutions is achieved with a MAPLE17 numerical quadrature algorithm. The work is relevant to improving understanding of gastric hydrodynamics and provides a benchmark for further computational fluid dynamics (CFD) simulations
    • …
    corecore