2,269 research outputs found

    Predictive Control for Alleviation of Gust Loads on Very Flexible Aircraft

    No full text
    In this work the dynamics of very flexible aircraft are described by a set of non-linear, multi-disciplinary equations of motion. Primary structural components are represented by a geometrically-exact composite beam model which captures the large dynamic deformations of the aircraft and the interaction between rigid-body and elastic degrees-of-freedom. In addition, an implementation of the unsteady vortex-lattice method capable of handling arbitrary kinematics is used to capture the unsteady, three-dimensional flow-eld around the aircraft as it deforms. Linearization of this coupled nonlinear description, which can in general be about a nonlinear reference state, is performed to yield relatively high-order linear time-invariant state-space models. Subsequent reduction of these models using standard balanced truncation results in low-order models suitable for the synthesis of online, optimization-based control schemes that incorporate actuator constraints. Predictive controllers are synthesized using these reduced-order models and applied to nonlinear simulations of the plant dynamics where they are shown to be superior to equivalent optimal linear controllers (LQR) for problems in which constraints are active

    Stratospheric turbulence measurements and models for aerospace plane design

    Get PDF
    Progress in computational atmospheric dynamics is exhibiting the ability of numerical simulation to describe instability processes associated with turbulence observed at altitudes between 15 and 25 km in the lower stratosphere. As these numerical simulation tools mature, they can be used to extend estimates of atmospheric perturbations from the present gust database for airplane design at altitudes below 15 km to altitudes between 25 and 50 km where aerospace plane operation would be at hypersonic speeds. The amount of available gust data and number of temperature perturbation observations are limited at altitudes between 15 and 25 km. On the other hand, in-situ gust data at higher altitudes are virtually nonexistent. The uncertain potential for future airbreathing hypersonic flight research vehicles to encounter strong turbulence at higher altitudes could penalize the design of these vehicles by undue cost or limitations on performance. Because the atmospheric structure changes markedly with altitude, direct extrapolation of gust magnitudes and encounter probabilities to the higher flight altitudes is not advisable. This paper presents a brief review of turbulence characteristics observed in the lower stratosphere and highlights the progress of computational atmospheric dynamics that may be used to estimate the severity of atmospheric transients at higher altitudes

    Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    Get PDF
    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included

    Flight test trajectory control analysis

    Get PDF
    Recent extensions to optimal control theory applied to meaningful linear models with sufficiently flexible software tools provide powerful techniques for designing flight test trajectory controllers (FTTCs). This report describes the principal steps for systematic development of flight trajectory controllers, which can be summarized as planning, modeling, designing, and validating a trajectory controller. The techniques have been kept as general as possible and should apply to a wide range of problems where quantities must be computed and displayed to a pilot to improve pilot effectiveness and to reduce workload and fatigue. To illustrate the approach, a detailed trajectory guidance law is developed and demonstrated for the F-15 aircraft flying the zoom-and-pushover maneuver

    Dynamic Response of Highly Flexible Flying Wings

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77056/1/AIAA-2006-1636-998.pd

    Dynamic Load Alleviation in Wake Vortex Encounters

    Get PDF
    This paper introduces an integrated approach for flexible-aircraft timedomain aeroelastic simulation and controller design suitable for wake encounter situations. The dynamic response of the vehicle, which may be subject to large wing deformations in trimmed flight, is described by a geometrically-nonlinear finite-element model. The aerodynamics are modeled using the unsteady vortex lattice method and include the arbitrary time-domain downwash distributions of a wake encounter. A consistent linearization in the structural degrees of freedom enables the use of balancing methods to reduce the problem size while retaining the nonlinear terms in the rigid-body equations. Numerical studies on a high-altitude, long-endurance aircraft demonstrate the reduced-order modeling approach for load calculations in wake vortex encounters over a large parameter space. Closed-loop results finally explore the potential of combining feedforward/feedback H∞ control and distributed control surfaces to obtain significant load reductions

    Nonlinear Gust Response Analysis of Free Flexible Aircraft

    Full text link

    Efficient and Accurate Gust Loads Simulations

    Get PDF

    Aeroelastic modelling and control of very flexible air vehicles using a nonlinear modal formulation

    Get PDF
    We present the development of a nonlinear reduced-order formulation for the simulation of geometrically-nonlinear responses of flexible aircraft and other aeroelastic systems. The theoretical foundation of the formulation will be presented first, based on a modal projection of the intrinsic description for beams, coupled with a 2-D unsteady aerodynamic description. We will then investigate the preservation of conservation laws in the proposed method and develop the numerical details in a practical implementation of the method in MATLAB. In this work we also developed a method of obtaining coeffcients of the nonlinear modal beam equations by means of a condensation process, based on the direct application of Guyan reduction of a high-fidelity 3D FE model. Structural and aeroelastic simulations will be presented to verify the implementation of the method against theory and published results, as well as demonstrating the numerical properties of the approach. Static trim, stability analysis and open-loop nonlinear flight simulations using the framework will be demonstrated on a highly-flexible flying wing and compared with published results, as well as carrying out control design and closed-loop nonlinear simulations to demonstrate the capabilities of the proposed reduced-order method.Open Acces
    • …
    corecore