39 research outputs found

    Gradient coil design and acoustic noise control in magnetic resonance imaging systems

    Get PDF

    Technical Feasibility of MR-Integrated Proton Therapy: Beam Deflection and Image Quality

    Get PDF
    Es wird erwartet, dass die Integration der Magnetresonanztomografie (MRT) in die Protonentherapie die Treffgenauigkeit bei der Strahlentherapie fĂŒr Krebserkrankungen deutlich verbessern wird. Besonders fĂŒr Tumoren in beweglichen Organen des Thorax oder des Abdomens könnte die MRT-integrierte Protonentherapie (MRiPT) eine Synchronisierung der Bestrahlung mit der Tumorposition ermöglichen, was zu einer verminderten Normalgewebsdosis und weniger Nebenwirkungen fĂŒhren könnte. Bis heute ist solch eine Integration jedoch aufgrund fehlender Studien zu potenziellen gegenseitigen StöreinflĂŒssen dieser beiden Systeme nicht vollzogen worden. Diese Arbeit widmete sich zwei solcher StöreinflĂŒsse, und zwar der Ablenkung des Protonenstrahls im Magnetfeld des MRT- Scanners, und umgekehrt, dem Einfluss der elekromagnetischen Felder der Protonentherapieanlage und des Protonenstrahls selbst auf die MRT-Bilder. Obwohl vorangegangene Studien den derzeitigen Konsens aufgezeigt haben, dass die Trajektorie eines abgebremsten Protonenstrahls im homogenen Phantom in einem transversalen Magnetfeld vorhersagbar ist, zeigte sich im quantitativen Vergleich der publizierten Modelle, der im ersten Teil dieser Arbeit vorgestellt wurde, dass die Vorhersagen dieser Modelle nur fĂŒr eine begrenzte Anzahl von Kombinationen aus MagnetfeldstĂ€rke und Protonenenergie ĂŒbereinstimmen. Die SchwĂ€chen bestehender analytischer Modelle wurden deshalb analysiert und quantifiziert. Kritische Annahmen und die mangelnde Anwendbarkeit auf realistische, d.h. inhomogene MagnetfeldstĂ€rken und Patientengeometrien wurden als Hauptprobleme identifiziert. Um diese zu ĂŒberwinden, wurde ein neues semianalytisches Modell namens RAMDIM entwickelt. Es wurde gezeigt, dass dieses auf realistischere FĂ€lle anwendbar und genauer ist als existierende analytische Modelle und dabei schneller als Monte-Carlo-basierte Teilchenspursimulationen. Es wird erwartet, dass dieses Modell in der MRiPT Anwendung findet zur schnellen und genauen Ablenkungsberechnung, zur Betrahlungsplanoptimierung und bei der MRT-gefĂŒhrten StrahlnachfĂŒhrung. In einem zweiten Schritt wurde die magnetfeldinduzierte Protonenstrahlablenkung in einem gewebeĂ€hnlichen Material durch Filmdosimetrie erstmalig gemessen und mit Monte-Carlo-Simulationen verglichen. In einem transversalen Magnetfeld einer Flussdichte von 0,95 T wurde experimentell gezeigt, dass die laterale Versetzung des Bragg-Peaks fĂŒr Protonenenergien zwischen 80 und 180 MeV in PMMA zwischen 1 und 10 mm liegt. Die Retraktion des Bragg-Peaks war ≀ 0,5 mm. Es wurde gezeigt, dass die gemessene Versetzung des Bragg-Peaks innerhalb von 0,8 mm mit Monte-Carlo-basierten Vorhersagen ĂŒbereinstimmt. Diese Ergebnisse weisen darauf hin, dass die Protonenstrahlablenkung durch Monte-Carlo-Simulationen genau vorhersagbar ist und damit der Realisierbarkeit der MRiPT nicht im Wege steht. Im zweiten Teil dieser Arbeit wurde erstmalig ein MRT-Scanner in eine ProtonenstrahlfĂŒhrung integriert. HierfĂŒr wurde ein offener Niederfeld-MRT-Scanner am Ende einer statischen ForschungsstrahlfĂŒhrung einer Protonentherapieanlage platziert. Die durch das statische Magnetfeld des MRT-Scanners hervorgerufene Strahlablenkung wurde bei der Ausrichtung des MRT-Scanners berĂŒcksichtigt. Die sequenzabhĂ€ngigen, verĂ€nderlichen Gradientenfelder hatten keinen messbaren Einfluss auf das transversale Strahlprofil hinter dem MRT-Scanner. Die MagnetfeldhomogenitĂ€t des Scanners lag innerhalb der Herstellervorgaben und zeigte keinen relevanten Einfluss von Rotationen der Protonengantry im benachbarten Bestrahlungsraum. Eine magnetische Abschirmung war zum gleichzeitigen Betrieb des MRT-Scanners und der Protonentherapieanlage nicht notwendig. Dies beweist die Machbarkeit gleichzeitiger Bestrahlung und Bildgebung in einem ersten MRiPT Aufbau. Die MRT-BildqualitĂ€t des Aufbaus wurde darauffolgend anhand eines angepassten Standardprotokolls aus Spin-Echo- und Gradienten-Echo-Sequenzen quantifiziert und es wurde gezeigt, dass die BildqualitĂ€t sowohl ohne als auch mit gleichzeitiger Bestrahlung hinreichend ist. Alle bestimmten geometrischen Parameter stimmten mit den physikalischen Abmessungen des verwendeten Phantoms innerhalb eines Bildpixels ĂŒberein. Wie es fĂŒr Niederfeld-MRT-Scanner ĂŒblich ist, war das Signal-Rausch-VerhĂ€ltnis (SNR) der MRT-Bilder gering, was im Vergleich zu den Standardkriterien zu einer geringen BildhomogenitĂ€t und zu einem hohen Geisterbildanteil im Bild fĂŒhrte. Außerdem wurde aufgrund von Unsicherheiten in der Hochfrequenzkalibrierung des MRT-Scanners eine starke Schwankung der vertikalen Phantomposition mit einem Interquartilabstand von bis zu 1,5 mm beobachtet. T2*-gewichtete Gradientenechosequenzen zeigten zudem aufgrund von Magnetfeldinho- mogenitĂ€ten relevante ortsabhĂ€ngige Bildverzerrungen. Es wurde gezeigt, dass die meisten BildqualitĂ€tsparameter mit und ohne gleichzeitige Betrahlung Ă€quivalent sind. Es wurde jedoch ein signifikanter Betrahlungseinfluss in Form von einer vertikalen Bildverschiebung und einer Verminderung des SNR beobachtet, die durch eine Änderung im Magnetfeld des MRT-Scanners erklĂ€rt werden können, welche durch zu diesem Feld parallel ausgerichtete Komponenten im Fernfeld der StrahlfĂŒhrungsmagneten hervorgerufen wird. WĂ€hrend das verminderte SNR vermutlich irrelevant ist (Dif- ferenz im Median ≀ 1,5), ist die sequenzabhĂ€ngige Bildverschiebung (Differenz im Median bis zu 0,7 mm) nicht immer vernachlĂ€ssigbar. Diese Ergebisse zeigen, dass die MRT-Bilder durch gleichzeitige Bildgebung nicht schwerwiegend verfĂ€lscht werden, dass aber eine dedizierte Optimierung der Hochfrequenzkalibrierung und der MRT-Bildsequenzen notwendig ist. Im letzten Teil der Arbeit wurde gezeigt, dass ein stromabhĂ€ngiger Einfluss des Protonenstrahls auf MRT-Bilder eines Wasserphantoms durch zwei verschiedene MRT-Sequenzen messbar gemacht und zur Reichweiteverifikation genutzt werden kann. Der Effekt war in verschiedenen FlĂŒssigkeiten, jedoch nicht in viskosen und festen Materialen, nachweisbar und wurde auf Hitzekonvektion zurĂŒckgefĂŒhrt. Es wird erwartet, dass diese Methode in der MRiPT fĂŒr Konstanztests der Protonenreichweite bei der MaschinenqualitĂ€tssicherung nĂŒtzlich sein wird. Zusammenfassend hat diese Arbeit die Genauigkeit der Vorhersage der Strahlablenkung quantifiziert und verbessert, sowie Potenzial und Realisierbarkeit einer gleichzeitigen MRT-Bildgebung und Protonenbestrahlung gezeigt. Die weitere Entwicklung eines ersten MRiPT-Prototyps ist demnach gerechtfertigt.:List of Figures v List of Tables vii 1 General Introduction 1 2 State of the Art: Proton Therapy and Magnetic Resonance Imaging 3 2.1 Proton Therapy 4 2.1.1 Physical Principle 4 2.1.2 Beam Delivery 7 2.1.3 Motion Management and the Role of Image Guidance 10 2.2 Magnetic Resonance Imaging 14 2.2.1 Physical Principle 14 2.2.2 Image Generation by Pulse Sequences 18 2.2.3 Image Quality 21 2.3 MR-Guided Radiotherapy 24 2.3.1 Offline MR Guidance 24 2.3.2 On-line MR Guidance 25 2.4 MR-Integrated Proton Therapy 28 2.4.1 Aims of this Thesis 32 3 Magnetic Field-Induced Beam Deflection and Bragg Peak Displacement 35 3.1 Analytical Description 36 3.1.1 Review of Analytical Models 36 3.1.2 New Model Formulation 41 3.1.3 Evaluation of Analytical and Numerical Models 44 3.1.4 Discussion 51 3.2 Monte Carlo Simulation and Experimental Verification 54 3.2.1 Verification Setup 54 3.2.2 Monte Carlo Simulation 56 3.2.3 Experimental Verification 60 3.2.4 Discussion 61 3.3 Summary 63 4 Integrated In-Beam MR System: Proof of Concept 65 4.1 Integration of a Low-Field MR Scanner and a Static Research Beamline 65 4.1.1 Proton Therapy System 66 4.1.2 MR Scanner 66 4.1.3 Potential Sources of Interference 67 4.1.4 Integration of Both Systems 68 4.2 Beam and Image Quality in the Integrated Setup 70 4.2.1 Beam Profile 70 4.2.2 MR Magnetic Field Homogeneity 72 4.2.3 MR Image Quality - Qualitative In Vivo and Ex Vivo Test 74 4.2.4 MR Image Quality - Quantitative Phantom Tests 77 4.3 Feasibility of MRI-based Range Verification 86 4.3.1 MR Sequences 86 4.3.2 Proton Beam Parameters 88 4.3.3 Target Material Dependence 91 4.3.4 Discussion 92 4.4 Summary 96 5 Discussion and Future Perspectives 99 6 Summary/Zusammenfassung 105 6.1 Summary 105 6.2 Zusammenfassung 108 Bibliography I Supplementary Information XXIX A Beam Deflection: Experimental Measurements XXIX A.1 Setup XXIX A.2 Film Handling and Evaluation XXX A.3 Uncertainty Estimation XXX B Beam Deflection: Monte Carlo Simulations XXXIII B.1 Magnetic Field Model XXXIII B.2 Uncertainty Estimation XXXIV C Integrated MRiPT Setup XXXVI C.1 Magnetic Field Map XXXVI C.2 Sequence Parameters XXXVI C.3 Image Quality Parameters XLII C.4 Range Verification Sequences XLIIThe integration of magnetic resonance imaging (MRI) into proton therapy is expected to strongly increase the targeting accuracy in radiation therapy for cancerous diseases. Especially for tumours situated in mobile organs in the thorax and abdomen, MR-integrated proton therapy (MRiPT) could enable the synchronisation of irradiation to the tumour position, resulting in less dose to normal tissue and reduced side effects. However, such an integration has been hindered so far by a lack of scientific studies on the potential mutual interference between the two components. This thesis was dedicated to two of these sources of interference, namely the deflection of the proton beam by the magnetic field of the MR scanner and, vice versa, alterations of the MR image induced by the electromagnetic fields of the proton therapy facility and by the beam itself. Although previous work has indicated that there is general consensus that the trajectory of a slowing down proton beam in a homogeneous phantom inside a transverse magnetic field is predictable, a quantitative comparison of the published methods, as presented in the first part of this thesis, has shown that predictions of different models only agree for certain proton beam energies and magnetic flux densities. Therefore, shortcomings of previously published analytical methods have been analysed and quantified. The inclusion of critical assumptions and the lack of applicability to realistic, i.e. non-uniform, magnetic flux densities and patient anatomies have been identified as main problems. To overcome these deficiencies, a new semi-analytical model called RAMDIM has been developed. It was shown that this model is both applicable to more realistic setups and less assumptive than existing analytical approaches, and faster than Monte Carlo based particle tracking simulations. This model is expected to be useful in MRiPT for fast and accurate deflection estimations, treatment plan optimisation, and MR-guided beam tracking. In a second step, the magnetic field-induced proton beam deflection has been measured for the first time in a tissue-mimicking medium by film dosimetry and has been compared against Monte Carlo simulations. In a transverse magnetic field of 0.95 T, it was experimentally shown that the lateral Bragg peak displacement ranges between 1 mm and 10 mm for proton energies between 80 and 180 MeV in PMMA. Range retraction was found to be ≀ 0.5 mm. The measured Bragg peak displacement was shown to agree within 0.8 mm with Monte Carlo simulations. These results indicate that proton beam deflection in a homogeneous medium is accurately predictable for intermediate proton beam energies and magnetic flux densities by Monte Carlo simulations and therefore not impeding the feasibility of MRiPT. In the second part of this thesis, an MR scanner has been integrated into a proton beam line for the first time. For this purpose, an open low-field MR scanner has been placed at the end of a fixed horizontal proton research beam line in a proton therapy facility. The beam deflection induced by the static magnetic field of the scanner was taken into account for alignment of the beam and the FOV of the scanner. The pulse sequence-dependent dynamic gradient fields did not measurably affect the transverse beam profile behind the MR scanner. The MR magnetic field homogeneity was within the vendor’s specifications and not relevantly influenced by the rotation of the proton gantry in the neighbouring treatment room. No magnetic field compensation system was required for simultaneous operation of the MR scanner and the proton therapy system. These results proof that simultaneous irradiation and imaging is feasible in an in-beam MR setup. The MR image quality of the in-beam MR scanner was then quantified by an adapted standard protocol comprising spin and gradient echo imaging and shown to be acceptable both with and without simultaneous proton beam irradiation. All geometrical parameters agreed with the mechanical dimensions of the used phantom within one pixel width. As common for low-field MR scanners, the signal-to-noise ratio (SNR) of the MR images was low, which resulted in a low image uniformity and a high ghosting ratio in comparison to the standardised test criteria. Furthermore, a strong fluctuation of the vertical phantom position due to uncertainties in the pre-scan frequency calibration was observed, with an interquartile range of up to 1.5 mm. T2*-weighted gradient echo images showed relevant nonuniform deformations due to magnetic field inhomogeneities. Most image quality parameters were shown to be equivalent with and without simultaneous proton beam irradiation. However, a significant influence of simultaneous irradiation was observed as a shift of the vertical phantom position and a decrease in the SNR, both of which can be explained by a change in the B0 field of the MR scanner induced by components of the fringe field of the beam line magnets directed parallel to B0 . While the decrease in SNR is not expected to be relevant (median differences were within 1.5 ), the sequence-dependent phantom shift (median differences of up to 0.7 mm) can become non-negligible. These results show that the MR images are not severely distorted by simultaneous irradiation, but a dedicated optimisation of the pre-scan RF calibration and the MR sequences is required for MRiPT. Lastly, a current-dependent influence of the proton beam on the MR image was shown to be measurable in water in two different MR sequences, which allowed for range verification measurements. The effect was observed in different liquids but not in highly viscose and solid materials, and most probably induced by heat convection. This method is expected to be useful in MRiPT for consistency tests of the proton range during machine-specific quality assurance. In conclusion, this work has improved and quantified the accuracy of beam deflection predictions and shown the feasibility and potential of in-beam MR imaging, justifying further research towards a first MRiPT prototype.:List of Figures v List of Tables vii 1 General Introduction 1 2 State of the Art: Proton Therapy and Magnetic Resonance Imaging 3 2.1 Proton Therapy 4 2.1.1 Physical Principle 4 2.1.2 Beam Delivery 7 2.1.3 Motion Management and the Role of Image Guidance 10 2.2 Magnetic Resonance Imaging 14 2.2.1 Physical Principle 14 2.2.2 Image Generation by Pulse Sequences 18 2.2.3 Image Quality 21 2.3 MR-Guided Radiotherapy 24 2.3.1 Offline MR Guidance 24 2.3.2 On-line MR Guidance 25 2.4 MR-Integrated Proton Therapy 28 2.4.1 Aims of this Thesis 32 3 Magnetic Field-Induced Beam Deflection and Bragg Peak Displacement 35 3.1 Analytical Description 36 3.1.1 Review of Analytical Models 36 3.1.2 New Model Formulation 41 3.1.3 Evaluation of Analytical and Numerical Models 44 3.1.4 Discussion 51 3.2 Monte Carlo Simulation and Experimental Verification 54 3.2.1 Verification Setup 54 3.2.2 Monte Carlo Simulation 56 3.2.3 Experimental Verification 60 3.2.4 Discussion 61 3.3 Summary 63 4 Integrated In-Beam MR System: Proof of Concept 65 4.1 Integration of a Low-Field MR Scanner and a Static Research Beamline 65 4.1.1 Proton Therapy System 66 4.1.2 MR Scanner 66 4.1.3 Potential Sources of Interference 67 4.1.4 Integration of Both Systems 68 4.2 Beam and Image Quality in the Integrated Setup 70 4.2.1 Beam Profile 70 4.2.2 MR Magnetic Field Homogeneity 72 4.2.3 MR Image Quality - Qualitative In Vivo and Ex Vivo Test 74 4.2.4 MR Image Quality - Quantitative Phantom Tests 77 4.3 Feasibility of MRI-based Range Verification 86 4.3.1 MR Sequences 86 4.3.2 Proton Beam Parameters 88 4.3.3 Target Material Dependence 91 4.3.4 Discussion 92 4.4 Summary 96 5 Discussion and Future Perspectives 99 6 Summary/Zusammenfassung 105 6.1 Summary 105 6.2 Zusammenfassung 108 Bibliography I Supplementary Information XXIX A Beam Deflection: Experimental Measurements XXIX A.1 Setup XXIX A.2 Film Handling and Evaluation XXX A.3 Uncertainty Estimation XXX B Beam Deflection: Monte Carlo Simulations XXXIII B.1 Magnetic Field Model XXXIII B.2 Uncertainty Estimation XXXIV C Integrated MRiPT Setup XXXVI C.1 Magnetic Field Map XXXVI C.2 Sequence Parameters XXXVI C.3 Image Quality Parameters XLII C.4 Range Verification Sequences XLI

    Technical Feasibility of MR-Integrated Proton Therapy:: Beam Deflection and Image Quality

    Get PDF
    Es wird erwartet, dass die Integration der Magnetresonanztomografie (MRT) in die Protonentherapie die Treffgenauigkeit bei der Strahlentherapie fĂŒr Krebserkrankungen deutlich verbessern wird. Besonders fĂŒr Tumoren in beweglichen Organen des Thorax oder des Abdomens könnte die MRT-integrierte Protonentherapie (MRiPT) eine Synchronisierung der Bestrahlung mit der Tumorposition ermöglichen, was zu einer verminderten Normalgewebsdosis und weniger Nebenwirkungen fĂŒhren könnte. Bis heute ist solch eine Integration jedoch aufgrund fehlender Studien zu potenziellen gegenseitigen StöreinflĂŒssen dieser beiden Systeme nicht vollzogen worden. Diese Arbeit widmete sich zwei solcher StöreinflĂŒsse, und zwar der Ablenkung des Protonenstrahls im Magnetfeld des MRT- Scanners, und umgekehrt, dem Einfluss der elekromagnetischen Felder der Protonentherapieanlage und des Protonenstrahls selbst auf die MRT-Bilder. Obwohl vorangegangene Studien den derzeitigen Konsens aufgezeigt haben, dass die Trajektorie eines abgebremsten Protonenstrahls im homogenen Phantom in einem transversalen Magnetfeld vorhersagbar ist, zeigte sich im quantitativen Vergleich der publizierten Modelle, der im ersten Teil dieser Arbeit vorgestellt wurde, dass die Vorhersagen dieser Modelle nur fĂŒr eine begrenzte Anzahl von Kombinationen aus MagnetfeldstĂ€rke und Protonenenergie ĂŒbereinstimmen. Die SchwĂ€chen bestehender analytischer Modelle wurden deshalb analysiert und quantifiziert. Kritische Annahmen und die mangelnde Anwendbarkeit auf realistische, d.h. inhomogene MagnetfeldstĂ€rken und Patientengeometrien wurden als Hauptprobleme identifiziert. Um diese zu ĂŒberwinden, wurde ein neues semianalytisches Modell namens RAMDIM entwickelt. Es wurde gezeigt, dass dieses auf realistischere FĂ€lle anwendbar und genauer ist als existierende analytische Modelle und dabei schneller als Monte-Carlo-basierte Teilchenspursimulationen. Es wird erwartet, dass dieses Modell in der MRiPT Anwendung findet zur schnellen und genauen Ablenkungsberechnung, zur Betrahlungsplanoptimierung und bei der MRT-gefĂŒhrten StrahlnachfĂŒhrung. In einem zweiten Schritt wurde die magnetfeldinduzierte Protonenstrahlablenkung in einem gewebeĂ€hnlichen Material durch Filmdosimetrie erstmalig gemessen und mit Monte-Carlo-Simulationen verglichen. In einem transversalen Magnetfeld einer Flussdichte von 0,95 T wurde experimentell gezeigt, dass die laterale Versetzung des Bragg-Peaks fĂŒr Protonenenergien zwischen 80 und 180 MeV in PMMA zwischen 1 und 10 mm liegt. Die Retraktion des Bragg-Peaks war ≀ 0,5 mm. Es wurde gezeigt, dass die gemessene Versetzung des Bragg-Peaks innerhalb von 0,8 mm mit Monte-Carlo-basierten Vorhersagen ĂŒbereinstimmt. Diese Ergebnisse weisen darauf hin, dass die Protonenstrahlablenkung durch Monte-Carlo-Simulationen genau vorhersagbar ist und damit der Realisierbarkeit der MRiPT nicht im Wege steht. Im zweiten Teil dieser Arbeit wurde erstmalig ein MRT-Scanner in eine ProtonenstrahlfĂŒhrung integriert. HierfĂŒr wurde ein offener Niederfeld-MRT-Scanner am Ende einer statischen ForschungsstrahlfĂŒhrung einer Protonentherapieanlage platziert. Die durch das statische Magnetfeld des MRT-Scanners hervorgerufene Strahlablenkung wurde bei der Ausrichtung des MRT-Scanners berĂŒcksichtigt. Die sequenzabhĂ€ngigen, verĂ€nderlichen Gradientenfelder hatten keinen messbaren Einfluss auf das transversale Strahlprofil hinter dem MRT-Scanner. Die MagnetfeldhomogenitĂ€t des Scanners lag innerhalb der Herstellervorgaben und zeigte keinen relevanten Einfluss von Rotationen der Protonengantry im benachbarten Bestrahlungsraum. Eine magnetische Abschirmung war zum gleichzeitigen Betrieb des MRT-Scanners und der Protonentherapieanlage nicht notwendig. Dies beweist die Machbarkeit gleichzeitiger Bestrahlung und Bildgebung in einem ersten MRiPT Aufbau. Die MRT-BildqualitĂ€t des Aufbaus wurde darauffolgend anhand eines angepassten Standardprotokolls aus Spin-Echo- und Gradienten-Echo-Sequenzen quantifiziert und es wurde gezeigt, dass die BildqualitĂ€t sowohl ohne als auch mit gleichzeitiger Bestrahlung hinreichend ist. Alle bestimmten geometrischen Parameter stimmten mit den physikalischen Abmessungen des verwendeten Phantoms innerhalb eines Bildpixels ĂŒberein. Wie es fĂŒr Niederfeld-MRT-Scanner ĂŒblich ist, war das Signal-Rausch-VerhĂ€ltnis (SNR) der MRT-Bilder gering, was im Vergleich zu den Standardkriterien zu einer geringen BildhomogenitĂ€t und zu einem hohen Geisterbildanteil im Bild fĂŒhrte. Außerdem wurde aufgrund von Unsicherheiten in der Hochfrequenzkalibrierung des MRT-Scanners eine starke Schwankung der vertikalen Phantomposition mit einem Interquartilabstand von bis zu 1,5 mm beobachtet. T2*-gewichtete Gradientenechosequenzen zeigten zudem aufgrund von Magnetfeldinho- mogenitĂ€ten relevante ortsabhĂ€ngige Bildverzerrungen. Es wurde gezeigt, dass die meisten BildqualitĂ€tsparameter mit und ohne gleichzeitige Betrahlung Ă€quivalent sind. Es wurde jedoch ein signifikanter Betrahlungseinfluss in Form von einer vertikalen Bildverschiebung und einer Verminderung des SNR beobachtet, die durch eine Änderung im Magnetfeld des MRT-Scanners erklĂ€rt werden können, welche durch zu diesem Feld parallel ausgerichtete Komponenten im Fernfeld der StrahlfĂŒhrungsmagneten hervorgerufen wird. WĂ€hrend das verminderte SNR vermutlich irrelevant ist (Dif- ferenz im Median ≀ 1,5), ist die sequenzabhĂ€ngige Bildverschiebung (Differenz im Median bis zu 0,7 mm) nicht immer vernachlĂ€ssigbar. Diese Ergebisse zeigen, dass die MRT-Bilder durch gleichzeitige Bildgebung nicht schwerwiegend verfĂ€lscht werden, dass aber eine dedizierte Optimierung der Hochfrequenzkalibrierung und der MRT-Bildsequenzen notwendig ist. Im letzten Teil der Arbeit wurde gezeigt, dass ein stromabhĂ€ngiger Einfluss des Protonenstrahls auf MRT-Bilder eines Wasserphantoms durch zwei verschiedene MRT-Sequenzen messbar gemacht und zur Reichweiteverifikation genutzt werden kann. Der Effekt war in verschiedenen FlĂŒssigkeiten, jedoch nicht in viskosen und festen Materialen, nachweisbar und wurde auf Hitzekonvektion zurĂŒckgefĂŒhrt. Es wird erwartet, dass diese Methode in der MRiPT fĂŒr Konstanztests der Protonenreichweite bei der MaschinenqualitĂ€tssicherung nĂŒtzlich sein wird. Zusammenfassend hat diese Arbeit die Genauigkeit der Vorhersage der Strahlablenkung quantifiziert und verbessert, sowie Potenzial und Realisierbarkeit einer gleichzeitigen MRT-Bildgebung und Protonenbestrahlung gezeigt. Die weitere Entwicklung eines ersten MRiPT-Prototyps ist demnach gerechtfertigt.:List of Figures v List of Tables vii 1 General Introduction 1 2 State of the Art: Proton Therapy and Magnetic Resonance Imaging 3 2.1 Proton Therapy 4 2.1.1 Physical Principle 4 2.1.2 Beam Delivery 7 2.1.3 Motion Management and the Role of Image Guidance 10 2.2 Magnetic Resonance Imaging 14 2.2.1 Physical Principle 14 2.2.2 Image Generation by Pulse Sequences 18 2.2.3 Image Quality 21 2.3 MR-Guided Radiotherapy 24 2.3.1 Offline MR Guidance 24 2.3.2 On-line MR Guidance 25 2.4 MR-Integrated Proton Therapy 28 2.4.1 Aims of this Thesis 32 3 Magnetic Field-Induced Beam Deflection and Bragg Peak Displacement 35 3.1 Analytical Description 36 3.1.1 Review of Analytical Models 36 3.1.2 New Model Formulation 41 3.1.3 Evaluation of Analytical and Numerical Models 44 3.1.4 Discussion 51 3.2 Monte Carlo Simulation and Experimental Verification 54 3.2.1 Verification Setup 54 3.2.2 Monte Carlo Simulation 56 3.2.3 Experimental Verification 60 3.2.4 Discussion 61 3.3 Summary 63 4 Integrated In-Beam MR System: Proof of Concept 65 4.1 Integration of a Low-Field MR Scanner and a Static Research Beamline 65 4.1.1 Proton Therapy System 66 4.1.2 MR Scanner 66 4.1.3 Potential Sources of Interference 67 4.1.4 Integration of Both Systems 68 4.2 Beam and Image Quality in the Integrated Setup 70 4.2.1 Beam Profile 70 4.2.2 MR Magnetic Field Homogeneity 72 4.2.3 MR Image Quality - Qualitative In Vivo and Ex Vivo Test 74 4.2.4 MR Image Quality - Quantitative Phantom Tests 77 4.3 Feasibility of MRI-based Range Verification 86 4.3.1 MR Sequences 86 4.3.2 Proton Beam Parameters 88 4.3.3 Target Material Dependence 91 4.3.4 Discussion 92 4.4 Summary 96 5 Discussion and Future Perspectives 99 6 Summary/Zusammenfassung 105 6.1 Summary 105 6.2 Zusammenfassung 108 Bibliography I Supplementary Information XXIX A Beam Deflection: Experimental Measurements XXIX A.1 Setup XXIX A.2 Film Handling and Evaluation XXX A.3 Uncertainty Estimation XXX B Beam Deflection: Monte Carlo Simulations XXXIII B.1 Magnetic Field Model XXXIII B.2 Uncertainty Estimation XXXIV C Integrated MRiPT Setup XXXVI C.1 Magnetic Field Map XXXVI C.2 Sequence Parameters XXXVI C.3 Image Quality Parameters XLII C.4 Range Verification Sequences XLIIThe integration of magnetic resonance imaging (MRI) into proton therapy is expected to strongly increase the targeting accuracy in radiation therapy for cancerous diseases. Especially for tumours situated in mobile organs in the thorax and abdomen, MR-integrated proton therapy (MRiPT) could enable the synchronisation of irradiation to the tumour position, resulting in less dose to normal tissue and reduced side effects. However, such an integration has been hindered so far by a lack of scientific studies on the potential mutual interference between the two components. This thesis was dedicated to two of these sources of interference, namely the deflection of the proton beam by the magnetic field of the MR scanner and, vice versa, alterations of the MR image induced by the electromagnetic fields of the proton therapy facility and by the beam itself. Although previous work has indicated that there is general consensus that the trajectory of a slowing down proton beam in a homogeneous phantom inside a transverse magnetic field is predictable, a quantitative comparison of the published methods, as presented in the first part of this thesis, has shown that predictions of different models only agree for certain proton beam energies and magnetic flux densities. Therefore, shortcomings of previously published analytical methods have been analysed and quantified. The inclusion of critical assumptions and the lack of applicability to realistic, i.e. non-uniform, magnetic flux densities and patient anatomies have been identified as main problems. To overcome these deficiencies, a new semi-analytical model called RAMDIM has been developed. It was shown that this model is both applicable to more realistic setups and less assumptive than existing analytical approaches, and faster than Monte Carlo based particle tracking simulations. This model is expected to be useful in MRiPT for fast and accurate deflection estimations, treatment plan optimisation, and MR-guided beam tracking. In a second step, the magnetic field-induced proton beam deflection has been measured for the first time in a tissue-mimicking medium by film dosimetry and has been compared against Monte Carlo simulations. In a transverse magnetic field of 0.95 T, it was experimentally shown that the lateral Bragg peak displacement ranges between 1 mm and 10 mm for proton energies between 80 and 180 MeV in PMMA. Range retraction was found to be ≀ 0.5 mm. The measured Bragg peak displacement was shown to agree within 0.8 mm with Monte Carlo simulations. These results indicate that proton beam deflection in a homogeneous medium is accurately predictable for intermediate proton beam energies and magnetic flux densities by Monte Carlo simulations and therefore not impeding the feasibility of MRiPT. In the second part of this thesis, an MR scanner has been integrated into a proton beam line for the first time. For this purpose, an open low-field MR scanner has been placed at the end of a fixed horizontal proton research beam line in a proton therapy facility. The beam deflection induced by the static magnetic field of the scanner was taken into account for alignment of the beam and the FOV of the scanner. The pulse sequence-dependent dynamic gradient fields did not measurably affect the transverse beam profile behind the MR scanner. The MR magnetic field homogeneity was within the vendor’s specifications and not relevantly influenced by the rotation of the proton gantry in the neighbouring treatment room. No magnetic field compensation system was required for simultaneous operation of the MR scanner and the proton therapy system. These results proof that simultaneous irradiation and imaging is feasible in an in-beam MR setup. The MR image quality of the in-beam MR scanner was then quantified by an adapted standard protocol comprising spin and gradient echo imaging and shown to be acceptable both with and without simultaneous proton beam irradiation. All geometrical parameters agreed with the mechanical dimensions of the used phantom within one pixel width. As common for low-field MR scanners, the signal-to-noise ratio (SNR) of the MR images was low, which resulted in a low image uniformity and a high ghosting ratio in comparison to the standardised test criteria. Furthermore, a strong fluctuation of the vertical phantom position due to uncertainties in the pre-scan frequency calibration was observed, with an interquartile range of up to 1.5 mm. T2*-weighted gradient echo images showed relevant nonuniform deformations due to magnetic field inhomogeneities. Most image quality parameters were shown to be equivalent with and without simultaneous proton beam irradiation. However, a significant influence of simultaneous irradiation was observed as a shift of the vertical phantom position and a decrease in the SNR, both of which can be explained by a change in the B0 field of the MR scanner induced by components of the fringe field of the beam line magnets directed parallel to B0 . While the decrease in SNR is not expected to be relevant (median differences were within 1.5 ), the sequence-dependent phantom shift (median differences of up to 0.7 mm) can become non-negligible. These results show that the MR images are not severely distorted by simultaneous irradiation, but a dedicated optimisation of the pre-scan RF calibration and the MR sequences is required for MRiPT. Lastly, a current-dependent influence of the proton beam on the MR image was shown to be measurable in water in two different MR sequences, which allowed for range verification measurements. The effect was observed in different liquids but not in highly viscose and solid materials, and most probably induced by heat convection. This method is expected to be useful in MRiPT for consistency tests of the proton range during machine-specific quality assurance. In conclusion, this work has improved and quantified the accuracy of beam deflection predictions and shown the feasibility and potential of in-beam MR imaging, justifying further research towards a first MRiPT prototype.:List of Figures v List of Tables vii 1 General Introduction 1 2 State of the Art: Proton Therapy and Magnetic Resonance Imaging 3 2.1 Proton Therapy 4 2.1.1 Physical Principle 4 2.1.2 Beam Delivery 7 2.1.3 Motion Management and the Role of Image Guidance 10 2.2 Magnetic Resonance Imaging 14 2.2.1 Physical Principle 14 2.2.2 Image Generation by Pulse Sequences 18 2.2.3 Image Quality 21 2.3 MR-Guided Radiotherapy 24 2.3.1 Offline MR Guidance 24 2.3.2 On-line MR Guidance 25 2.4 MR-Integrated Proton Therapy 28 2.4.1 Aims of this Thesis 32 3 Magnetic Field-Induced Beam Deflection and Bragg Peak Displacement 35 3.1 Analytical Description 36 3.1.1 Review of Analytical Models 36 3.1.2 New Model Formulation 41 3.1.3 Evaluation of Analytical and Numerical Models 44 3.1.4 Discussion 51 3.2 Monte Carlo Simulation and Experimental Verification 54 3.2.1 Verification Setup 54 3.2.2 Monte Carlo Simulation 56 3.2.3 Experimental Verification 60 3.2.4 Discussion 61 3.3 Summary 63 4 Integrated In-Beam MR System: Proof of Concept 65 4.1 Integration of a Low-Field MR Scanner and a Static Research Beamline 65 4.1.1 Proton Therapy System 66 4.1.2 MR Scanner 66 4.1.3 Potential Sources of Interference 67 4.1.4 Integration of Both Systems 68 4.2 Beam and Image Quality in the Integrated Setup 70 4.2.1 Beam Profile 70 4.2.2 MR Magnetic Field Homogeneity 72 4.2.3 MR Image Quality - Qualitative In Vivo and Ex Vivo Test 74 4.2.4 MR Image Quality - Quantitative Phantom Tests 77 4.3 Feasibility of MRI-based Range Verification 86 4.3.1 MR Sequences 86 4.3.2 Proton Beam Parameters 88 4.3.3 Target Material Dependence 91 4.3.4 Discussion 92 4.4 Summary 96 5 Discussion and Future Perspectives 99 6 Summary/Zusammenfassung 105 6.1 Summary 105 6.2 Zusammenfassung 108 Bibliography I Supplementary Information XXIX A Beam Deflection: Experimental Measurements XXIX A.1 Setup XXIX A.2 Film Handling and Evaluation XXX A.3 Uncertainty Estimation XXX B Beam Deflection: Monte Carlo Simulations XXXIII B.1 Magnetic Field Model XXXIII B.2 Uncertainty Estimation XXXIV C Integrated MRiPT Setup XXXVI C.1 Magnetic Field Map XXXVI C.2 Sequence Parameters XXXVI C.3 Image Quality Parameters XLII C.4 Range Verification Sequences XLI

    Maximising the mutual interoperability of an MRI scanner and a cancer therapy particle accelerator

    Get PDF
    The work described in this PhD thesis was undertaken as part of a much larger research project: The Australian MRI-Linac program. The goal of this program is to merge two existing medical technologies – an MRI scanner and a Linear Accelerator (Linac) – thereby creating an advanced form of cancer treatment incorporating cutting edge anatomical and physiological imaging techniques. An overview of the background information necessary to understand the work presented in this thesis is provided in chapters 1 (overview of radiotherapy) and 2 (overview of electromagnetism and accelerator physics). The work in the remainder of this thesis can be split into two distinct sections, corresponding to the two quite different (but ultimately related) projects I worked on throughout this thesis: modelling the impact of external magnetic fields on electron beam transport within the linear accelerator, and the implementation of patient rotation in radiotherapy. The former project is the focus of Chapters 3-6. In Chapter 3 a finite element model of a clinical gridded electron gun is developed based on 3D laser scanning and electrical measurements, and the sensitivity of this gun in magnetic fields characterised. The results complement the existing literature in showing that conventional linear accelerator components are very sensitive to external magnetic fields – in fact this gun is over twice as sensitive to axial magnetic fields than the less realistic models existing in the literature. A first order approach to overcoming this sensitivity is to use magnetic shielding – however magnetic shielding of the linear accelerator can negatively impact on the performance of the MRI scanner. This magnetic shielding problem is explored in Chapter 4, where the fundamental principles of passive magnetic shielding are explored, and magnetic shields are implemented for the two possible MRI-linac configurations (in-line and perpendicular) for the 1.0 Tesla MRI magnet used in the Australian MRI Linac program. The efficacy of the shielding and the impact on the MRI is quantified, with the conclusion that passive shielding could be successfully implemented to allow acceptable operation of the linac without overly degrading the magnet performance of the MRI scanner. An alternative approach to magnetic shielding which would not have any impact on the magnet is to redesign the linear accelerator such that it functions robustly in an MRI environment without the need for shielding. This approach is explored in chapter 5, where a novel electron accelerator concept based on an RF-electron gun configuration is detailed. It is shown via particle in cell simulations that such a design would be able to operate in a wide range of axial magnetic fields with minimal current loss. In chapter 6, an experimental beam line based on this concept was constructed at Stanford Linear Accelerator Center (SLAC). This project is ongoing but progress so far is described in Chapter 6. In the second part of this thesis, a completely different project is explored, patient rotation. Patient rotation would be very beneficial for MRI-Linac systems as it would eliminate the complicated engineering that is used in conventional systems to rotate the beam around the patient, and the MRI could be used to adapt in real time for the resultant anatomic deformation. Patient rotation would also minimise some of the sources of electromagnetic interference explored in chapters 3-7. The two major obstacles to patient rotation are (1) Page 11 patient tolerance to rotation, and (2) anatomical deformation due to rotation. To quantify patient rotation, a clinical study of 15 patients was carried out and is detailed in chapter 7. The results of this study suggest that patient tolerance to rotation may not be a major issue, although this result needs to be verified in larger patient cohorts. In chapter 8, the design and construction of an MRI-compatible patient rotation device is detailed. This device is the first of its kind, and will allow data on anatomic deformation under rotation to be collected, enabling strategies to adapt for this motion to be developed. Thus far, MRI compatibility has been assessed and a volunteer imaging study undertaken, in which pelvic images were acquired under rotation angles of 360⁰ every 45⁰. In summary: In chapters 3-5, the impact of magnetic fields on conventional accelerator components was quantified; and two independent approaches to compensating for these effects (magnetic shielding and bespoke accelerator design) were explored. In chapter 6, an experimental beam is constructed to verify and support the findings of chapter 6. In chapter 7, a clinical study was undertaken quantifying patient tolerance of slow, single arc rotation. Finally, in chapter 8 a unique medical device was designed, constructed and tested, and through this device MRI images of anatomical distortion under lying rotation were collected and quantified

    Single-sided magnetic nanoparticles imaging scanner for early detection of breast cancer

    Get PDF
    Electromagnetic coils form the basis of magnetic particle imaging (MPI) scanners. Previous scanner designs employ Helmholtz coil arrangement which has low sensitivity and high cost of fabrication. Furthermore, the scanners have long signal acquisition time and high memory requirement. This research focuses on developing a simple, low-cost and low memory demanding one-dimensional MPI scanner capable of imaging the position and concentration of magnetic nanoparticles (MNPs), using electromagnetic coils in the form of solenoids. The scanner produces an oscillatory magnetic field to excite the MNPs and a static magnetic field to confine the region of interest. The MNPs reacted with a nonlinear magnetisation response, inducing a voltage signal that was measured with an appropriate gradiometer pickup coil. In Fourier space, the received voltage signal consists of the fundamental excitation frequency and harmonics. This research utilises the second harmonic response of the MNPs to determine their position and concentration. Analogue Bandpass and Bandstop filters were designed for signal excitation and reception. Resovist and Perimag MNPs in liquid and immobilised form were used as tracer materials, which were moved to different spatial positions through the field of view (FOV), to record the induced voltages. The magnitude response of the Bandpass filter with 22.8 kHz fundamental frequency shows a flat amplitude in the passband with a smooth roll-off rate of ±80 dB/pole, while the Bandstop filter efficiently attenuates the fundamental frequency and passed the 45.6 kHz second harmonic frequency. Results of the excitation coil design revealed that a magnetic field within the range of 0.8 mT to 4.4 mT was obtained, while a voltage in microvolts range was induced in the gradiometer pickup coil. The contour maps derived from imaging one and two samples of the MNPs in the XY-plane revealed their position and shape. Additionally, the average threshold of the peak signal amplitude was obtained as 10.63 ΌV that would indicate the presence of MNPs concentration sufficient for cancer detection. The developed single-sided MPI scanner has a spatial resolution of less than 1 mm, a pixel resolution of 51.5 megapixels and 42.1 ms image acquisition time. Thus, the outcome of this research showed that the developed single-side MPI scanner has a potential in the detection of MNPs, which could help in sentinel lymph node biopsy for breast cancer diagnosis

    Magnetic resonance imaging to improve structural localisation in radiotherapy planning

    Get PDF
    The purpose of this thesis is to develop the role of magnetic resonance imaging (MRI) in the radiotherapy (RT) planning process. This began by assessing a prototype inline three-dimensional distortion correction algorithm. A number of quality assurance tests were conducted using different test objects and the 3D distortion correction algorithm was compared with the standard two-dimensional version available for clinical use on the MRI system. Scanning patients using MRI in the RT position within an immobilisation mask can be problematic, since the multi-channel head coils typically used in diagnostic imaging, are not compatible with the immobilisation mask. To assess the image quality which can be obtained with MR imaging in the RT position, various MRI quality assurance phantoms were positioned within an immobilisation mask and a series of image quality tests were performed on four imaging coils compatible with the immobilisation mask. It was shown that only the 4-channel cardiac coil delivered comparable image quality to a multi-channel head coil. An investigation was performed to demonstrate how MRI patient position protocols influence registration quality in patients with prostate cancer undergoing radical RT. The consequences for target volume definition and dose coverage with RT planning were also assessed. Twenty patients with prostate cancer underwent a computed tomography (CT) scan in the RT position, a diagnostic MRI scan and an MRI scan in the RT position. The CT datasets were independently registered with the two MRI set-ups and the quality of registration was compared. This study demonstrated that registering CT and MR images in the RT position provides a statistically significant improvement in registration quality, target definition and target volume dose coverage for patients with prostate cancer. A similar study was performed on twenty-two patients with oropharyngeal cancer undergoing radical RT. It was shown that when patients with oropharyngeal cancer undergo an MRI in the RT position there are significant improvements in CT-MR image registration, target definition and target volume dose coverage

    Double volumetric navigators for real-time simultaneous shim and motion measurement and correction in Glycogen Chemical Exchange Saturation Transfer (GlycoCEST) MRI

    Get PDF
    Glycogen is the primary glucose storage mechanism in in living systems and plays a central role in systemic glucose homeostasis. The study of muscle glycogen concentrations in vivo still largely relies on tissue sampling methods via needle biopsy. However, muscle biopsies are invasive and limit the frequency of measurements and the number of sites that can be assessed. Non-invasive methods for quantifying glycogen in vivo are therefore desirable in order to understand the pathophysiology of common diseases with dysregulated glycogen metabolism such as obesity, insulin resistance, and diabetes, as well as glycogen metabolism in sports physiology. Chemical Exchange Saturation Transfer (CEST) MRI has emerged as a non-invasive contrast enhancement technique that enables detection of molecules, like glycogen, whose concentrations are too low to impact the contrast of standard MR imaging. CEST imaging is performed by selectively saturating hydrogen nuclei of the metabolites that are in chemical exchange with those of water molecules and detecting a reduction in MRI signal in the water pool resulting from continuous chemical exchange. However, CEST signal can easily be compromised by artifacts. Since CEST is based on chemical shift, it is very sensitive to field inhomogeneity which may arise from poor initial shimming, subject respiration, heating of shim iron, mechanical vibrations or subject motion. This is a particular problem for molecules that resonate close to water, such as - OH protons in glycogen, where small variations in chemical shift cause misinterpretation of CEST data. The purpose of this thesis was to optimize the CEST MRI sequence for glycogen detection and implement a real-time simultaneous motion and shim correction and measurement method. First, analytical solution of the Bloch-McConnell equations was used to find optimal continuous wave RF pulse parameters for glycogen detection, and results were validated on a phantom with varying glycogen concentrations and in vivo on human calf muscle. Next, the CEST sequence was modified with double volumetric navigators (DvNavs) to measure pose changes and update field of view and zero- and first-order shim parameters. Finally, the impact of B0 field fluctuations on the scan-rescan reproducibility of CEST was evaluated in vivo in 9 volunteers across 10 different scans. Simulation results showed an optimal RF saturation power of 1.5”T and duration of 1s for glycoCEST. These parameters were validated experimentally in vivo and the ability to detect varying glycogen concentrations was demonstrated in a phantom. Phantom data showed that the DvNav-CEST sequence accurately estimates system frequency and linear shim gradient changes due to motion and corrects resulting image distortions. In addition, DvNav-CEST was shown to yield improved CEST quantification in vivo in the presence of motion and motion-induced field inhomogeneity. B0 field fluctuations were found to lower the reproducibility of CEST measures: the mean coefficient of variation (CoV) for repeated scans was 83.70 ± 70.79 % without shim correction. However, the DvNav-CEST sequence was able to measure and correct B0 variations, reducing the CoV to 2.6 ± 1.37 %. The study confirms the possibility of detecting glycogen using CEST MRI at 3 T and shows the potential of the real-time shim and motion navigated CEST sequence for producing repeatable results in vivo by reducing the effect of B0 field fluctuations

    Perspectives of Nuclear Physics in Europe: NuPECC Long Range Plan 2010

    Get PDF
    The goal of this European Science Foundation Forward Look into the future of Nuclear Physics is to bring together the entire Nuclear Physics community in Europe to formulate a coherent plan of the best way to develop the field in the coming decade and beyond.<p></p> The primary aim of Nuclear Physics is to understand the origin, evolution, structure and phases of strongly interacting matter, which constitutes nearly 100% of the visible matter in the universe. This is an immensely important and challenging task that requires the concerted effort of scientists working in both theory and experiment, funding agencies, politicians and the public.<p></p> Nuclear Physics projects are often “big science”, which implies large investments and long lead times. They need careful forward planning and strong support from policy makers. This Forward Look provides an excellent tool to achieve this. It represents the outcome of detailed scrutiny by Europe’s leading experts and will help focus the views of the scientific community on the most promising directions in the field and create the basis for funding agencies to provide adequate support.<p></p> The current NuPECC Long Range Plan 2010 “Perspectives of Nuclear Physics in Europe” resulted from consultation with close to 6 000 scientists and engineers over a period of approximately one year. Its detailed recommendations are presented on the following pages. For the interested public, a short summary brochure has been produced to accompany the Forward Look.<p></p&gt

    The Estimation and Correction of Rigid Motion in Helical Computed Tomography

    Get PDF
    X-ray CT is a tomographic imaging tool used in medicine and industry. Although technological developments have significantly improved the performance of CT systems, the accuracy of images produced by state-of-the-art scanners is still often limited by artefacts due to object motion. To tackle this problem, a number of motion estimation and compensation methods have been proposed. However, no methods with the demonstrated ability to correct for rigid motion in helical CT scans appear to exist. The primary aims of this thesis were to develop and evaluate effective methods for the estimation and correction of arbitrary six degree-of-freedom rigid motion in helical CT. As a first step, a method was developed to accurately estimate object motion during CT scanning with an optical tracking system, which provided sub-millimetre positional accuracy. Subsequently a motion correction method, which is analogous to a method previously developed for SPECT, was adapted to CT. The principle is to restore projection consistency by modifying the source-detector orbit in response to the measured object motion and reconstruct from the modified orbit with an iterative reconstruction algorithm. The feasibility of this method was demonstrated with a rapidly moving brain phantom, and the efficacy of correcting for a range of human head motions acquired from healthy volunteers was evaluated in simulations. The methods developed were found to provide accurate and artefact-free motion corrected images with most types of head motion likely to be encountered in clinical CT imaging, provided that the motion was accurately known. The method was also applied to CT data acquired on a hybrid PET/CT scanner demonstrating its versatility. Its clinical value may be significant by reducing the need for repeat scans (and repeat radiation doses), anesthesia and sedation in patient groups prone to motion, including young children
    corecore