18 research outputs found

    Numerical continuation for fractional PDEs: sharp teeth and bloated snakes

    Full text link
    Partial differential equations (PDEs) involving fractional Laplace operators have been increasingly used to model non-local diffusion processes and are actively investigated using both analytical and numerical approaches. The purpose of this work is to study the effects of the spectral fractional Laplacian on the bifurcation structure of reaction-diffusion systems on bounded domains. In order to do this we use advanced numerical continuation techniques to compute the solution branches. Since current available continuation packages only support systems involving the standard Laplacian, we first extend the pde2path software to treat fractional PDEs. The new capabilities are then applied to the study of the Allen-Cahn equation, the Swift-Hohenberg equation and the Schnakenberg system (in which the standard Laplacian is each replaced by the spectral fractional Laplacian). Our study reveals some common effects, which contributes to a better understanding of fractional diffusion in generic reaction-diffusion systems. In particular, we investigate the changes in snaking bifurcation diagrams and also study the spatial structure of non-trivial steady states upon variation of the order of the fractional Laplacian. Our results show that the fractional order can induce very significant qualitative and quantitative changes in global bifurcation structures

    pde2path - version 2.0: faster FEM, multi-parameter continuation, nonlinear boundary conditions, and periodic domains - a short manual

    Full text link
    pdepath 2.0 is an upgrade of the continuation/bifurcation package pde2path for elliptic systems of PDEs over bounded 2D domains, based on the Matlab pdetoolbox. The new features include a more efficient use of FEM, easier switching between different single parameter continuations, genuine multi-parameter continuation (e.g., fold continuation), more efficient implementation of nonlinear boundary conditions, cylinder and torus geometries (i.e., periodic boundary conditions), and a general interface for adding auxiliary equations like mass conservation or phase equations for continuation of traveling waves. The package (library, demos, manuals) can be downloaded at www.staff.uni-oldenburg.de/hannes.uecker/pde2pat

    Pattern formation of a Schnakenberg-type plant root hair initiation model

    Get PDF
    This paper concentrates on the diversity of patterns in a quite general Schnakenberg-type model. We discuss existence and nonexistence of nonconstant positive steady state solutions as well as their bounds. By means of investigating Turing, steady state and Hopf bifurcations, pattern formation, including Turing patterns, nonconstant spatial patterns or time periodic orbits, is shown. Also, the global dynamics analysis is carried out

    Continuation for thin film hydrodynamics and related scalar problems

    Full text link
    This chapter illustrates how to apply continuation techniques in the analysis of a particular class of nonlinear kinetic equations that describe the time evolution through transport equations for a single scalar field like a densities or interface profiles of various types. We first systematically introduce these equations as gradient dynamics combining mass-conserving and nonmass-conserving fluxes followed by a discussion of nonvariational amendmends and a brief introduction to their analysis by numerical continuation. The approach is first applied to a number of common examples of variational equations, namely, Allen-Cahn- and Cahn-Hilliard-type equations including certain thin-film equations for partially wetting liquids on homogeneous and heterogeneous substrates as well as Swift-Hohenberg and Phase-Field-Crystal equations. Second we consider nonvariational examples as the Kuramoto-Sivashinsky equation, convective Allen-Cahn and Cahn-Hilliard equations and thin-film equations describing stationary sliding drops and a transversal front instability in a dip-coating. Through the different examples we illustrate how to employ the numerical tools provided by the packages auto07p and pde2path to determine steady, stationary and time-periodic solutions in one and two dimensions and the resulting bifurcation diagrams. The incorporation of boundary conditions and integral side conditions is also discussed as well as problem-specific implementation issues
    corecore