27,814 research outputs found

    Asymptotic expansions and fast computation of oscillatory Hilbert transforms

    Full text link
    In this paper, we study the asymptotics and fast computation of the one-sided oscillatory Hilbert transforms of the form H+(f(t)eiωt)(x)=int0eiωtf(t)txdt,ω>0,x0,H^{+}(f(t)e^{i\omega t})(x)=-int_{0}^{\infty}e^{i\omega t}\frac{f(t)}{t-x}dt,\qquad \omega>0,\qquad x\geq 0, where the bar indicates the Cauchy principal value and ff is a real-valued function with analytic continuation in the first quadrant, except possibly a branch point of algebraic type at the origin. When x=0x=0, the integral is interpreted as a Hadamard finite-part integral, provided it is divergent. Asymptotic expansions in inverse powers of ω\omega are derived for each fixed x0x\geq 0, which clarify the large ω\omega behavior of this transform. We then present efficient and affordable approaches for numerical evaluation of such oscillatory transforms. Depending on the position of xx, we classify our discussion into three regimes, namely, x=O(1)x=\mathcal{O}(1) or x1x\gg1, 0<x10<x\ll 1 and x=0x=0. Numerical experiments show that the convergence of the proposed methods greatly improve when the frequency ω\omega increases. Some extensions to oscillatory Hilbert transforms with Bessel oscillators are briefly discussed as well.Comment: 32 pages, 6 figures, 4 table

    Fast, numerically stable computation of oscillatory integrals with stationary points

    Get PDF
    We present a numerically stable way to compute oscillatory integrals of the form 11f(x)eiωg(x)dx\int{-1}^{1} f(x)e^{i\omega g(x)}dx. For each additional frequency, only a small, well-conditioned linear system with a Hessenberg matrix must be solved, and the amount of work needed decreases as the frequency increases. Moreover, we can modify the method for computing oscillatory integrals with stationary points. This is the first stable algorithm for oscillatory integrals with stationary points which does not lose accuracy as the frequency increases and does not require deformation into the complex plane

    Reliable operations on oscillatory functions

    Full text link
    Approximate pp-point Leibniz derivation formulas as well as interpolatory Simpson quadrature sums adapted to oscillatory functions are discussed. Both theoretical considerations and numerical evidence concerning the dependence of the discretization errors on the frequency parameter of the oscillatory functions show that the accuracy gain of the present formulas over those based on the exponential fitting approach [L. Ixaru, "Computer Physics Communications", 105 (1997) 1--19] is overwhelming.Comment: 20 pages with 5 figures within, welcome any comments to [email protected]

    Efficient computation of highly oscillatory integrals by using QTT tensor approximation

    Full text link
    We propose a new method for the efficient approximation of a class of highly oscillatory weighted integrals where the oscillatory function depends on the frequency parameter ω0\omega \geq 0, typically varying in a large interval. Our approach is based, for fixed but arbitrary oscillator, on the pre-computation and low-parametric approximation of certain ω\omega-dependent prototype functions whose evaluation leads in a straightforward way to recover the target integral. The difficulty that arises is that these prototype functions consist of oscillatory integrals and are itself oscillatory which makes them both difficult to evaluate and to approximate. Here we use the quantized-tensor train (QTT) approximation method for functional mm-vectors of logarithmic complexity in mm in combination with a cross-approximation scheme for TT tensors. This allows the accurate approximation and efficient storage of these functions in the wide range of grid and frequency parameters. Numerical examples illustrate the efficiency of the QTT-based numerical integration scheme on various examples in one and several spatial dimensions.Comment: 20 page

    Fast Algorithms for the computation of Fourier Extensions of arbitrary length

    Get PDF
    Fourier series of smooth, non-periodic functions on [1,1][-1,1] are known to exhibit the Gibbs phenomenon, and exhibit overall slow convergence. One way of overcoming these problems is by using a Fourier series on a larger domain, say [T,T][-T,T] with T>1T>1, a technique called Fourier extension or Fourier continuation. When constructed as the discrete least squares minimizer in equidistant points, the Fourier extension has been shown shown to converge geometrically in the truncation parameter NN. A fast O(Nlog2N){\mathcal O}(N \log^2 N) algorithm has been described to compute Fourier extensions for the case where T=2T=2, compared to O(N3){\mathcal O}(N^3) for solving the dense discrete least squares problem. We present two O(Nlog2N){\mathcal O}(N\log^2 N ) algorithms for the computation of these approximations for the case of general TT, made possible by exploiting the connection between Fourier extensions and Prolate Spheroidal Wave theory. The first algorithm is based on the explicit computation of so-called periodic discrete prolate spheroidal sequences, while the second algorithm is purely algebraic and only implicitly based on the theory

    Computing the Hilbert transform and its inverse

    Get PDF
    We construct a new method for approximating Hilbert transforms and their inverse throughout the complex plane. Both problems can be formulated as Riemann-Hilbert problems via Plemelj's lemma. Using this framework, we re-derive existing approaches for computing Hilbert transforms over the real line and unit interval, with the added benefit that we can compute the Hilbert transform in the complex plane. We then demonstrate the power of this approach by generalizing to the half line. Combining two half lines, we can compute the Hilbert transform of a more general class of functions on the real line than is possible with existing methods

    Fast Computation of Fourier Integral Operators

    Get PDF
    We introduce a general purpose algorithm for rapidly computing certain types of oscillatory integrals which frequently arise in problems connected to wave propagation and general hyperbolic equations. The problem is to evaluate numerically a so-called Fourier integral operator (FIO) of the form e2πiΦ(x,ξ)a(x,ξ)f^(ξ)dξ\int e^{2\pi i \Phi(x,\xi)} a(x,\xi) \hat{f}(\xi) \mathrm{d}\xi at points given on a Cartesian grid. Here, ξ\xi is a frequency variable, f^(ξ)\hat f(\xi) is the Fourier transform of the input ff, a(x,ξ)a(x,\xi) is an amplitude and Φ(x,ξ)\Phi(x,\xi) is a phase function, which is typically as large as ξ|\xi|; hence the integral is highly oscillatory at high frequencies. Because an FIO is a dense matrix, a naive matrix vector product with an input given on a Cartesian grid of size NN by NN would require O(N4)O(N^4) operations. This paper develops a new numerical algorithm which requires O(N2.5logN)O(N^{2.5} \log N) operations, and as low as O(N)O(\sqrt{N}) in storage space. It operates by localizing the integral over polar wedges with small angular aperture in the frequency plane. On each wedge, the algorithm factorizes the kernel e2πiΦ(x,ξ)a(x,ξ)e^{2 \pi i \Phi(x,\xi)} a(x,\xi) into two components: 1) a diffeomorphism which is handled by means of a nonuniform FFT and 2) a residual factor which is handled by numerical separation of the spatial and frequency variables. The key to the complexity and accuracy estimates is that the separation rank of the residual kernel is \emph{provably independent of the problem size}. Several numerical examples demonstrate the efficiency and accuracy of the proposed methodology. We also discuss the potential of our ideas for various applications such as reflection seismology.Comment: 31 pages, 3 figure
    corecore