5,419 research outputs found

    Soft lubrication: the elastohydrodynamics of non-conforming and conforming contacts

    Full text link
    We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g. a shell) or constitutive properties (e.g. a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving parallel to a soft layer coating a rigid substrate; a soft cylinder moving parallel to a rigid substrate; a cylindrical shell moving parallel to a rigid substrate; and finally a cylindrical conforming journal bearing coated with a thin soft layer. In addition, for the particular case of a soft layer coating a rigid substrate we consider both elastic and poroelastic material responses. For all these cases we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness parameter = hydrodynamic pressure/elastic stiffness = surface deflection/gap thickness which characterizes the fluid-induced deformation of the interface. The corresponding cases for a spherical slider are treated using scaling concepts.Comment: 61 pages, 20 figures, 2 tables, submitted to Physics of Fluid

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is a combined activity of Case Western Reserve University, Ohio Aerospace Institute (OAI) and NASA Lewis. The purpose of ICOMP is to develop techniques to improve problem solving capabilities in all aspects of computational mechanics related to propulsion. The activities at ICOMP during 1991 are described

    A two-pressure model for slightly compressible single phase flow in bi-structured porous media

    Get PDF
    Problems involving flow in porous media are ubiquitous in many natural and engineered systems. Mathematical modeling of such systems often relies on homogenization of pore-scale equations and macroscale continuum descriptions. For single phase flow, Stokes equations at the pore-scale are generally approximated by Darcy’s law at a larger scale. In this work, we develop an alternative model to Darcy’s law that can be used to describe slightly compressible single phase flow within bi-structured porous media. We use the method of volume averaging to upscale mass and momentum balance equations with the fluid phase split into two fictitious domains. The resulting macroscale model combines two coupled equations for average pressures with regional Darcy’s laws for velocities. In these equations, effective parameters are expressed via integrals of mapping variables that solve boundary value problems over a representative unit cell. Finally, we illustrate the behaviour of these equations in a two-dimensional model porous medium and validate our approach by comparing solutions of the homogenized equations with computations of the exact microscale problem
    corecore