399 research outputs found

    New Challenges Arising in Engineering Problems with Fractional and Integer Order

    Get PDF
    Mathematical models have been frequently studied in recent decades, in order to obtain the deeper properties of real-world problems. In particular, if these problems, such as finance, soliton theory and health problems, as well as problems arising in applied science and so on, affect humans from all over the world, studying such problems is inevitable. In this sense, the first step in understanding such problems is the mathematical forms. This comes from modeling events observed in various fields of science, such as physics, chemistry, mechanics, electricity, biology, economy, mathematical applications, and control theory. Moreover, research done involving fractional ordinary or partial differential equations and other relevant topics relating to integer order have attracted the attention of experts from all over the world. Various methods have been presented and developed to solve such models numerically and analytically. Extracted results are generally in the form of numerical solutions, analytical solutions, approximate solutions and periodic properties. With the help of newly developed computational systems, experts have investigated and modeled such problems. Moreover, their graphical simulations have also been presented in the literature. Their graphical simulations, such as 2D, 3D and contour figures, have also been investigated to obtain more and deeper properties of the real world problem

    New developments in Functional and Fractional Differential Equations and in Lie Symmetry

    Get PDF
    Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows:Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis

    Numerical Simulation for a Multidimensional Fourth-Order Nonlinear Fractional Subdiffusion Model with Time Delay

    Full text link
    The purpose of this paper is to develop a numerical scheme for the two-dimensional fourth-order fractional subdiffusion equation with variable coefficients and delay. Using the L2 − 1σ approximation of the time Caputo derivative, a finite difference method with second-order accuracy in the temporal direction is achieved. The novelty of this paper is to introduce a numerical scheme for the problem under consideration with variable coefficients, nonlinear source term, and delay time constant. The numerical results show that the global convergence orders for spatial and time dimensions are approximately fourth order in space and second-order in time. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Acknowledgments: M.A.Z. wishes to acknowledge the support of Nazarbayev University Program 091019CRP2120 and the partial support of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant “Dynamical Analysis and Synchronization of Complex Neural Networks with Its Applications”). M.A.Z. wishes also to acknowledge the financial support of the National Research Centre of Egypt (NRC)

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Differential/Difference Equations

    Get PDF
    The study of oscillatory phenomena is an important part of the theory of differential equations. Oscillations naturally occur in virtually every area of applied science including, e.g., mechanics, electrical, radio engineering, and vibrotechnics. This Special Issue includes 19 high-quality papers with original research results in theoretical research, and recent progress in the study of applied problems in science and technology. This Special Issue brought together mathematicians with physicists, engineers, as well as other scientists. Topics covered in this issue: Oscillation theory; Differential/difference equations; Partial differential equations; Dynamical systems; Fractional calculus; Delays; Mathematical modeling and oscillations

    Invariant subspace method to the initial and boundary value problem of the higher dimensional nonlinear time-fractional PDEs

    Full text link
    This paper systematically explains how to apply the invariant subspace method using variable transformation for finding the exact solutions of the (k+1)-dimensional nonlinear time-fractional PDEs in detail. More precisely, we have shown how to transform the given (k+1)-dimensional nonlinear time-fractional PDEs into (1+1)-dimensional nonlinear time-fractional PDEs using the variable transformation procedure. Also, we explain how to derive the exact solutions for the reduced equations using the invariant subspace method. Additionally, in this careful and systematic study, we will investigate how to find the various types of exact solutions of the (3+1)-dimensional nonlinear time-fractional convection-diffusion-reaction equation along with appropriate initial and boundary conditions for the first time. Moreover, the obtained exact solutions of the equation as mentioned above can be written in terms of polynomial, exponential, trigonometric, hyperbolic, and Mittag-Leffler functions. Finally, the discussed method is extended for the (k+1)-dimensional nonlinear time-fractional PDEs with several linear time delays, and the exact solution of the (3+1)-dimensional nonlinear time-fractional delay convection-diffusion-reaction equation is derived.Comment: 45 page

    Recent Advances in Theoretical and Computational Modeling of Composite Materials and Structures

    Get PDF
    The advancement in manufacturing technology and scientific research has improved the development of enhanced composite materials with tailored properties depending on their design requirements in many engineering fields, as well as in thermal and energy management. Some representative examples of advanced materials in many smart applications and complex structures rely on laminated composites, functionally graded materials (FGMs), and carbon-based constituents, primarily carbon nanotubes (CNTs), and graphene sheets or nanoplatelets, because of their remarkable mechanical properties, electrical conductivity and high permeability. For such materials, experimental tests usually require a large economical effort because of the complex nature of each constituent, together with many environmental, geometrical and or mechanical uncertainties of non-conventional specimens. At the same time, the theoretical and/or computational approaches represent a valid alternative for designing complex manufacts with more flexibility. In such a context, the development of advanced theoretical and computational models for composite materials and structures is a subject of active research, as explored here for a large variety of structural members, involving the static, dynamic, buckling, and damage/fracturing problems at different scales

    The westward drift of the lithosphere. A tidal ratchet?

    Get PDF
    Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth’s geodynamics? The reason why the tidal drag has been questioned as the mechanism determining the lithospheric shift relative to the underlying mantle is the apparent too high viscosity of the asthenosphere. However, plate boundaries asymmetries are a robust indication of the ‘westerly’ decoupling of the entire Earth’s outer lithospheric shell and new studies support lower viscosities in the low-velocity layer (LVZ) atop the asthenosphere. Since the solid Earth tide oscillation is longer in one side relative to the other due to the contemporaneous Moon’s revolution, we demonstrate that a non-linear rheological behavior is expected in the lithosphere mantle interplay. This may provide a sort of ratchet favoring lowering of the LVZ viscosity under shear, allowing decoupling in the LVZ and triggering the westerly motion of the lithosphere relative to the mantle
    corecore