88 research outputs found

    Development of Photonic Crystal Fiber Based Gas/ Chemical Sensors

    Full text link
    The development of highly-sensitive and miniaturized sensors that capable of real-time analytes detection is highly desirable. Nowadays, toxic or colorless gas detection, air pollution monitoring, harmful chemical, pressure, strain, humidity, and temperature sensors based on photonic crystal fiber (PCF) are increasing rapidly due to its compact structure, fast response and efficient light controlling capabilities. The propagating light through the PCF can be controlled by varying the structural parameters and core-cladding materials, as a result, evanescent field can be enhanced significantly which is the main component of the PCF based gas/chemical sensors. The aim of this chapter is to (1) describe the principle operation of PCF based gas/ chemical sensors, (2) discuss the important PCF properties for optical sensors, (3) extensively discuss the different types of microstructured optical fiber based gas/ chemical sensors, (4) study the effects of different core-cladding shapes, and fiber background materials on sensing performance, and (5) highlight the main challenges of PCF based gas/ chemical sensors and possible solutions

    PCF Based Sensor with High Sensitivity, High Birefringence and Low Confinement Losses for Liquid Analyte Sensing Applications

    Get PDF
    In this paper, we report a design of high sensitivity Photonic Crystal Fiber (PCF) sensor with high birefringence and low confinement losses for liquid analyte sensing applications. The proposed PCF structures are designed with supplementary elliptical air holes in the core region vertically-shaped V-PCF and horizontally-shaped H-PCF. The full vectorial Finite Element Method (FEM) simulations performed to examine the sensitivity, the confinement losses, the effective refractive index and the modal birefringence features of the proposed elliptical air hole PCF structures. We show that the proposed PCF structures exhibit high relative sensitivity, high birefringence and low confinement losses simultaneously for various analytes

    DESIGN AND CHARACTERIZATION OF PHOTONIC CRYSTAL FIBER FOR SENSING APPLICATIONS

    Get PDF
    A simple structure of Photonic Crystal Fiber (PCF) for gas sensing and chemical sensing has been proposed in this paper. Index guiding properties of proposed PCF have been numerically investigated by using finite element method (FEM). From the numerical result, it is shown that the relative sensitivity and confinement loss depend on geomatrical parameters and wavelength. The relative sensitivity is increased by a increase of the diameters of central hollow core and innermost ring holes and confinement loss is decreased with a increase of the diameters of outermost cladding holes. By optimize the parmeters, the relative sensitivity is improved to the value of 20.10%. In this case, the confinement loss of the fiber is 1.09×10-3 dB/m

    Terahertz Sensor via Ultralow-Loss Dispersion-Flattened Polymer Optical Fiber: Design and Analysis

    Get PDF
    A novel cyclic olefin copolymer (COC)-based polymer optical fiber (POF) with a rectangular porous core is designed for terahertz (THz) sensing by the finite element method. The numerical simulations showed an ultrahigh relative sensitivity of 89.73% of the x-polarization mode at a frequency of 1.2 THz and under optimum design conditions. In addition to this, they showed an ultralow confinement loss of 2.18 × 10−12 cm−1, a high birefringence of 1.91 × 10−3, a numerical aperture of 0.33, and an effective mode area of 1.65 × 105 μm2 was obtained for optimum design conditions. Moreover, the range dispersion variation was within 0.7 ± 0.41 ps/THz/cm, with the frequency range of 1.0–1.4 THz. Compared with the traditional sensor, the late-model sensor will have application value in THz sensing and communication

    Design and Analysis of Decagonal Photonic Crystal Fiber with Elliptical air hole core for liquid sensing

    Get PDF
    In this paper, a decagonal geometry has been designed for liquid sensing. The liquid analytes that are sensed are ethanol, benzene and water as they are the most used analytes in the chemical and biological industries. Firstly, a simple decagonal structure is designed and  and sensitivity of this structure is calculated. Then, the core structure is modified and decagonal, octagonal and hexagonal geometries are constructed inside the core with circular holes. Lastly, these circular holes are replaced by elliptical holes. All the designed layouts are analysed and compared. The sensitivity obtained is of the order 40-50 % and confinement loss of order which shows that these structures can be used for sensing ethanol, water and benzene and are reliable. For benzene, water and ethanol, the decagonal structure with core comprised of decagonal geometry, made up of elliptical holes (x as major axis), gives the best results. For this geometry, the values are 1.379, 1.317 and 1.313 for benzene, ethanol and water respectively. The sensitivity values obtained are 51.94%, 46.95%, and 44.45% and confinement loss value is , and  respectively

    Design and analysis of decagonal photonic crystal fiber with elliptical air hole core for liquid sensing

    Get PDF
    465-470In this paper, a decagonal geometry has been designed for liquid sensing. The liquid analytes that are sensed are ethanol, benzene and water as they are the most used analytes in the chemical and biological industries. Firstly, a decagonal structure has been designed and neff and sensitivity of this structure has been calculated. Then, the core structure has been modified and decagonal, octagonal and hexagonal geometries have been constructed inside the core with circular holes. Lastly, these circular holes have been replaced by elliptical holes. All the designed layouts have been analyzed and compared. The sensitivity obtained is of the order 40-50 % and confinement loss of order 10-9 dB/m which shows that these structures can be used for sensing ethanol, water and benzene and are reliable. For benzene, water and ethanol, the decagonal structure with core comprised of decagonal geometry, has been made of elliptical holes (x as major axis), gives the best results. For this geometry, the neff values are 1.379, 1.317 and 1.313 for benzene, ethanol and water, respectively. The sensitivity values obtained are 51.94%, 46.95%, and 44.45% and confinement loss value is 8.19 x 10-10, 1.03 x 10-10 and 1.069 x 10-7 dB/m, respectively

    Computational study of nanostructured composite materials for photonic crystal fibre sensors.

    Get PDF
    Photonic Crystal Fibres (PCFs) developed using nanostructured composite materials provides special optical properties which can revolutionise current optical sensing technologies. The modal and propagation characteristics of the PCF can be tailored by altering their geometrical parameters and material infiltrations. A drawback of commercially available PCF is their limited operating wavelengths, which is mostly in the infrared (IR) spectral band. Nanostructured composite materials manipulates the optical properties of the PCF, facilitating their operation in the higher sensitivity near infrared (NIR) wavelength regime. Hence, there arises a need to closely investigate the effect of nanostructure and composite materials on various optical parameters of the PCF sensor. This paper presents a hexagonal PCF designed using COMSOL MULTIPHYSICS 5.1 software, with a nanostructured core and microstructured cladding. Propagation characteristics like confinement loss and mode field diameter (MFD) are investigated and compared with various geometrical parameters like core diameter, cladding hole diameter, pitch, etc. Theoretical study revealed that a nanostructured PCF experiences reduced confinement losses and also improved mode field diameter. Furthermore, studies are also carried out by infiltrating the cladding holes with composite materials (liquid crystal and glass). These simulations helped in analysing the effect of different liquid crystal materials on PCF bandwidth and spectral positions

    Recent Progress in Optical Fiber Research

    Get PDF
    This book presents a comprehensive account of the recent progress in optical fiber research. It consists of four sections with 20 chapters covering the topics of nonlinear and polarisation effects in optical fibers, photonic crystal fibers and new applications for optical fibers. Section 1 reviews nonlinear effects in optical fibers in terms of theoretical analysis, experiments and applications. Section 2 presents polarization mode dispersion, chromatic dispersion and polarization dependent losses in optical fibers, fiber birefringence effects and spun fibers. Section 3 and 4 cover the topics of photonic crystal fibers and a new trend of optical fiber applications. Edited by three scientists with wide knowledge and experience in the field of fiber optics and photonics, the book brings together leading academics and practitioners in a comprehensive and incisive treatment of the subject. This is an essential point of reference for researchers working and teaching in optical fiber technologies, and for industrial users who need to be aware of current developments in optical fiber research areas
    corecore