8 research outputs found

    Recent Trends in Coatings and Thin Film–Modeling and Application

    Get PDF
    Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value

    Computational Fluid Dynamics 2020

    Get PDF
    This book presents a collection of works published in a recent Special Issue (SI) entitled “Computational Fluid Dynamics”. These works address the development and validation of existent numerical solvers for fluid flow problems and their related applications. They present complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics (MHD) phenomena. The applications are wide and range from aerodynamic drag and pressure waves to geometrical blade modification on aerodynamics characteristics of high-pressure gas turbines, hydromagnetic flow arising in porous regions, optimal design of isothermal sloshing vessels to evaluation of (hybrid) nanofluid properties, their control using MHD, and their effect on different modes of heat transfer. Recent advances in numerical, theoretical, and experimental methodologies, as well as new physics, new methodological developments, and their limitations are presented within the current book. Among others, in the presented works, special attention is paid to validating and improving the accuracy of the presented methodologies. This book brings together a collection of inter/multidisciplinary works on many engineering applications in a coherent manner

    Non-Newtonian Microfluidics

    Get PDF
    Microfluidics has seen a remarkable growth over recent decades, with its extensive applications in engineering, medicine, biology, chemistry, etc. Many of these real applications of microfluidics involve the handling of complex fluids, such as whole blood, protein solutions, and polymeric solutions, which exhibit non-Newtonian characteristics—specifically viscoelasticity. The elasticity of the non-Newtonian fluids induces intriguing phenomena, such as elastic instability and turbulence, even at extremely low Reynolds numbers. This is the consequence of the nonlinear nature of the rheological constitutive equations. The nonlinear characteristic of non-Newtonian fluids can dramatically change the flow dynamics, and is useful to enhance mixing at the microscale. Electrokinetics in the context of non-Newtonian fluids are also of significant importance, with their potential applications in micromixing enhancement and bio-particles manipulation and separation. In this Special Issue, we welcomed research papers, and review articles related to the applications, fundamentals, design, and the underlying mechanisms of non-Newtonian microfluidics, including discussions, analytical papers, and numerical and/or experimental analyses

    Structural, Magnetic, Dielectric, Electrical, Optical and Thermal Properties of Nanocrystalline Materials: Synthesis, Characterization and Application

    Get PDF
    This book is a collection of the research articles and review article, published in special issue "Structural, Magnetic, Dielectric, Electrical, Optical and Thermal Properties of Nanocrystalline Materials: Synthesis, Characterization and Application"

    Numerical Simulation of Convective-Radiative Heat Transfer

    Get PDF
    This book presents numerical, experimental, and analytical analysis of convective and radiative heat transfer in various engineering and natural systems, including transport phenomena in heat exchangers and furnaces, cooling of electronic heat-generating elements, and thin-film flows in various technical systems. It is well known that such heat transfer mechanisms are dominant in the systems under consideration. Therefore, in-depth study of these regimes is vital for both the growth of industry and the preservation of natural resources. The authors included in this book present insightful and provocative studies on convective and radiative heat transfer using modern analytical techniques. This book will be very useful for academics, engineers, and advanced students

    Numerical Investigation of Aligned Magnetic Flow Comprising Nanoliquid over a Radial Stretchable Surface with Cattaneo–Christov Heat Flux with Entropy Generation

    No full text
    The influence of entropy generation on aligned magnetic flow-including nanoparticles through a convectively heated radial stretched surface in the existence of Cattaneo–Christov heat flux is inspected. The highly nonlinear leading PDE’s via the similar scaling transformation are developed. The resulting system via the bvp4c technique from Matlab is computed. The impacts of rising constraints on the liquid velocity, nanoparticles concentration and temperature profile are argued and showed via portraits and table. In addition, the performance of liquid flow is inspected through the friction factor, the mass and heat transfer rate. With the rise in the thermal relaxation constraint, the thermal boundary layer is appreciably altered. Due to an aligned angle, the velocity of nanoliquid declines, while the concentration and temperature of nanofluid augment. It is also observed that the values of friction factor increase, whereas the values of heat and mass transfer decline due to an aligned angle. Entropy generation profiles developed due to magnetic parameters and the aligned angle. Lastly, a comparative scrutiny is composed via the previous studies which lead to support for our presently developed model
    corecore