4,933 research outputs found

    MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver

    Get PDF
    MFC is an open-source tool for solving multi-component, multi-phase, and bubbly compressible flows. It is capable of efficiently solving a wide range of flows, including droplet atomization, shock–bubble interaction, and bubble dynamics. We present the 5- and 6-equation thermodynamically-consistent diffuse-interface models we use to handle such flows, which are coupled to high-order interface-capturing methods, HLL-type Riemann solvers, and TVD time-integration schemes that are capable of simulating unsteady flows with strong shocks. The numerical methods are implemented in a flexible, modular framework that is amenable to future development. The methods we employ are validated via comparisons to experimental results for shock–bubble, shock–droplet, and shock–water-cylinder interaction problems and verified to be free of spurious oscillations for material-interface advection and gas–liquid Riemann problems. For smooth solutions, such as the advection of an isentropic vortex, the methods are verified to be high-order accurate. Illustrative examples involving shock–bubble-vessel-wall and acoustic–bubble-net interactions are used to demonstrate the full capabilities of MFC

    Dynamics of a two-dimensional upflowing mixing layer seeded with bubbles : bubble dispersion and effect of two-way coupling

    Get PDF
    The evolution and structure of a spatially evolving two-dimensional mixing layer seeded with small bubbles are numerically investigated. The one-way coupling approach is first employed to show that characteristics of bubble dispersion are dominated by the possibility for sufficiently small bubbles to be captured in the core of the vortices. A stability analysis of the ODE system governing bubble trajectories reveals that this entrapment process is governed by the presence of stable fixed points advected by the mean flow. Two-way coupling simulations are then carried out to study how the global features of a two-dimensional flow are affected by bubble-induced disturbances. The local interaction mechanism between the two phases is first analyzed using detailed simulations of a single bubbly vortex. The stability of the corresponding fixed point is found to be altered by the collective motion of bubbles. For trapped bubbles, the interphase momentum transfer yields periodic sequences of entrapment, local reduction of velocity gradients, and eventually escape of bubbles. Similar mechanisms are found to take place in the spatially-evolving mixing layer. The presence of bubbles is also found to enhance the destabilization of the inlet velocity profile and to shorten the time required for the roll-up phenomenon to occur. The most spectacular effects of small bubbles on the large-scale flow are a global tilting of the mixing layer centerline towards the low-velocity side and a strong increase of its spreading rate. In contrast, no significant modification of the flow is observed when the bubbles are not captured in the large-scale vortices, which occurs when the bubble characteristics are such that the drift parameter defined in the text exceeds a critical value. These two contrasted behaviors agree with available experimental results

    Bubbly and Buoyant Particle-Laden Turbulent Flows

    Get PDF
    Fluid turbulence is commonly associated with stronger drag, greater heat transfer, and more efficient mixing than in laminar flows. In many natural and industrial settings, turbulent liquid flows contain suspensions of dispersed bubbles and light particles. Recently, much attention has been devoted to understanding the behavior and underlying physics of such flows by use of both experiments and high-resolution direct numerical simulations. This review summarizes our present understanding of various phenomenological aspects of bubbly and buoyant particle-laden turbulent flows. We begin by discussing different dynamical regimes, including those of crossing trajectories and wake-induced oscillations of rising particles, and regimes in which bubbles and particles preferentially accumulate near walls or within vortical structures. We then address how certain paradigmatic turbulent flows, such as homogeneous isotropic turbulence, channel flow, Taylor-Couette turbulence, and thermally driven turbulence, are modified by the presence of these dispersed bubbles and buoyant particles. We end with a list of summary points and future research questions.Comment: 29 pages, 14 figure

    On Validating an Astrophysical Simulation Code

    Full text link
    We present a case study of validating an astrophysical simulation code. Our study focuses on validating FLASH, a parallel, adaptive-mesh hydrodynamics code for studying the compressible, reactive flows found in many astrophysical environments. We describe the astrophysics problems of interest and the challenges associated with simulating these problems. We describe methodology and discuss solutions to difficulties encountered in verification and validation. We describe verification tests regularly administered to the code, present the results of new verification tests, and outline a method for testing general equations of state. We present the results of two validation tests in which we compared simulations to experimental data. The first is of a laser-driven shock propagating through a multi-layer target, a configuration subject to both Rayleigh-Taylor and Richtmyer-Meshkov instabilities. The second test is a classic Rayleigh-Taylor instability, where a heavy fluid is supported against the force of gravity by a light fluid. Our simulations of the multi-layer target experiments showed good agreement with the experimental results, but our simulations of the Rayleigh-Taylor instability did not agree well with the experimental results. We discuss our findings and present results of additional simulations undertaken to further investigate the Rayleigh-Taylor instability.Comment: 76 pages, 26 figures (3 color), Accepted for publication in the ApJ

    Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario

    Full text link
    We develop an improved method for tracking the nuclear flame during the deflagration phase of a Type Ia supernova, and apply it to study the variation in outcomes expected from the gravitationally confined detonation (GCD) paradigm. A simplified 3-stage burning model and a non-static ash state are integrated with an artificially thickened advection-diffusion-reaction (ADR) flame front in order to provide an accurate but highly efficient representation of the energy release and electron capture in and after the unresolvable flame. We demonstrate that both our ADR and energy release methods do not generate significant acoustic noise, as has been a problem with previous ADR-based schemes. We proceed to model aspects of the deflagration, particularly the role of buoyancy of the hot ash, and find that our methods are reasonably well-behaved with respect to numerical resolution. We show that if a detonation occurs in material swept up by the material ejected by the first rising bubble but gravitationally confined to the white dwarf (WD) surface (the GCD paradigm), the density structure of the WD at detonation is systematically correlated with the distance of the deflagration ignition point from the center of the star. Coupled to a suitably stochastic ignition process, this correlation may provide a plausible explanation for the variety of nickel masses seen in Type Ia Supernovae.Comment: 14 pages, 10 figures, accepted to the Astrophysical Journa

    Single and multiphase CFD approaches for modelling partially baffled stirred vessels: comparison of experimental data with numerical predictions

    Get PDF
    Whilst the use of CFD to study mixing vessels is now common-place, there are still many specialised applications that are yet to be addressed. Here we present CFD and PIV results for a hydrodynamic study of a partially baffled vessel with a free surface. The standard k.ε and SSG Reynolds Stress turbulence models are used and the numerical predictions of the mean flow field are compared with experimental data for single phase modelling. At low rotation rates a flat free surface is observed and the flow is simulated using a single phase model, whilst at high rotation rates an Eulerian–Eulerian multiphase model is used to capture the free surface location, even under conditions when gas is drawn down to the impeller. It is shown that there are significant transient effects that mean many of the “rules of thumb” that have been developed for fully baffled vessels must be revisited. In particular such flows have central vortices that are unsteady and complex, transient flow-induced vortical structures generated by the impeller–baffle interactions and require a significant number of simulated agitator rotations before meaningful statistical analysis can be performed. Surprisingly, better agreement between CFD and experimental data was obtained using the k.ε than the SSG Reynolds stress model. The multiphase inhomogeneous approach used here with simplified physics assumptions gives good agreement for power consumption, and with PIV measurements with flat and deformed free surfaces, making this affordable method practical to avoid the erroneous modelling assumption of a flat free surface often made in such cases
    corecore