17,476 research outputs found

    A frequency-domain approach to the analysis of stability and bifurcations in nonlinear systems described by differential-algebraic equations

    No full text
    A general numerical technique is proposed for the assessment of the stability of periodic solutions and the determination of bifurcations for limit cycles in autonomous nonlinear systems represented by ordinary differential equations in the differential-algebraic form. The method is based on the harmonic balance technique, and exploits the same Jacobian matrix of the nonlinear system used in the Newton iterative numerical solution of the harmonic balance equations for the determination of the periodic steady-state. To demonstrate the approach, it is applied to the determination of the bifurcation curves in the parameters' space of Chua's circuit with cubic nonlinearity, and to study the dynamics of the limit cycle of a Colpitts oscillato

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Josephson Vortex Qubit based on a Confocal Annular Josephson Junction

    Get PDF
    We report theoretical and experimental work on the development of a Josephson vortex qubit based on a confocal annular Josephson tunnel junction (CAJTJ). The key ingredient of this geometrical configuration is a periodically variable width that generates a spatial vortex potential with bistable states. This intrinsic vortex potential can be tuned by an externally applied magnetic field and tilted by a bias current. The two-state system is accurately modeled by a one-dimensional sine-Gordon like equation by means of which one can numerically calculate both the magnetic field needed to set the vortex in a given state as well as the vortex depinning currents. Experimental data taken at 4.2K on high-quality Nb/Al-AlOx/Nb CAJTJs with an individual trapped fluxon advocate the presence of a robust and finely tunable double-well potential for which reliable manipulation of the vortex state has been classically demonstrated. The vortex is prepared in a given potential by means of an externally applied magnetic field, while the state readout is accomplished by measuring the vortex-depinning current in a small magnetic field. Our proof of principle experiment convincingly demonstrates that the proposed vortex qubit based on CAJTJs is robust and workable.Comment: 20 pages, 11 figure
    corecore