17,050 research outputs found

    A mixed 1\ell_1 regularization approach for sparse simultaneous approximation of parameterized PDEs

    Full text link
    We present and analyze a novel sparse polynomial technique for the simultaneous approximation of parameterized partial differential equations (PDEs) with deterministic and stochastic inputs. Our approach treats the numerical solution as a jointly sparse reconstruction problem through the reformulation of the standard basis pursuit denoising, where the set of jointly sparse vectors is infinite. To achieve global reconstruction of sparse solutions to parameterized elliptic PDEs over both physical and parametric domains, we combine the standard measurement scheme developed for compressed sensing in the context of bounded orthonormal systems with a novel mixed-norm based 1\ell_1 regularization method that exploits both energy and sparsity. In addition, we are able to prove that, with minimal sample complexity, error estimates comparable to the best ss-term and quasi-optimal approximations are achievable, while requiring only a priori bounds on polynomial truncation error with respect to the energy norm. Finally, we perform extensive numerical experiments on several high-dimensional parameterized elliptic PDE models to demonstrate the superior recovery properties of the proposed approach.Comment: 23 pages, 4 figure

    Approximation systems

    Full text link
    We introduce the notion of an approximation system as a generalization of Taylor approximation, and we give some first examples. Next we develop the general theory, including error bounds and a sufficient criterion for convergence. More examples follow. We conclude the article with a description of numerical implementation and directions for future research. Prerequisites are mostly elementary complex analysis.Comment: 27 pages; in v3 minor change

    Small Winding-Number Expansion: Vortex Solutions at Critical Coupling

    Full text link
    We study an axially symmetric solution of a vortex in the Abelian-Higgs model at critical coupling in detail. Here we propose a new idea for a perturbative expansion of a solution, where the winding number of a vortex is naturally extended to be a real number and the solution is expanded with respect to it around its origin. We test this idea on three typical constants contained in the solution and confirm that this expansion works well with the help of the Pad\'e approximation. For instance, we analytically reproduce the value of the scalar charge of the vortex with an error of O(106)O(10^{-6}). This expansion is also powerful even for large winding numbers.Comment: 38 pages,48 figure

    On the numerical calculation of the roots of special functions satisfying second order ordinary differential equations

    Full text link
    We describe a method for calculating the roots of special functions satisfying second order linear ordinary differential equations. It exploits the recent observation that the solutions of a large class of such equations can be represented via nonoscillatory phase functions, even in the high-frequency regime. Our algorithm achieves near machine precision accuracy and the time required to compute one root of a solution is independent of the frequency of oscillations of that solution. Moreover, despite its great generality, our approach is competitive with specialized, state-of-the-art methods for the construction of Gaussian quadrature rules of large orders when it used in such a capacity. The performance of the scheme is illustrated with several numerical experiments and a Fortran implementation of our algorithm is available at the author's website

    Invariant Discretization Schemes Using Evolution-Projection Techniques

    Full text link
    Finite difference discretization schemes preserving a subgroup of the maximal Lie invariance group of the one-dimensional linear heat equation are determined. These invariant schemes are constructed using the invariantization procedure for non-invariant schemes of the heat equation in computational coordinates. We propose a new methodology for handling moving discretization grids which are generally indispensable for invariant numerical schemes. The idea is to use the invariant grid equation, which determines the locations of the grid point at the next time level only for a single integration step and then to project the obtained solution to the regular grid using invariant interpolation schemes. This guarantees that the scheme is invariant and allows one to work on the simpler stationary grids. The discretization errors of the invariant schemes are established and their convergence rates are estimated. Numerical tests are carried out to shed some light on the numerical properties of invariant discretization schemes using the proposed evolution-projection strategy

    Wave polynomials, transmutations and Cauchy's problem for the Klein-Gordon equation

    Full text link
    We prove a completeness result for a class of polynomial solutions of the wave equation called wave polynomials and construct generalized wave polynomials, solutions of the Klein-Gordon equation with a variable coefficient. Using the transmutation (transformation) operators and their recently discovered mapping properties we prove the completeness of the generalized wave polynomials and use them for an explicit construction of the solution of the Cauchy problem for the Klein-Gordon equation. Based on this result we develop a numerical method for solving the Cauchy problem and test its performance.Comment: 31 pages, 8 figures (16 graphs

    Algebraic structure of stochastic expansions and efficient simulation

    Full text link
    We investigate the algebraic structure underlying the stochastic Taylor solution expansion for stochastic differential systems.Our motivation is to construct efficient integrators. These are approximations that generate strong numerical integration schemes that are more accurate than the corresponding stochastic Taylor approximation, independent of the governing vector fields and to all orders. The sinhlog integrator introduced by Malham & Wiese (2009) is one example. Herein we: show that the natural context to study stochastic integrators and their properties is the convolution shuffle algebra of endomorphisms; establish a new whole class of efficient integrators; and then prove that, within this class, the sinhlog integrator generates the optimal efficient stochastic integrator at all orders.Comment: 19 page
    corecore