2,412 research outputs found

    On the Convergence of Alternating Direction Lagrangian Methods for Nonconvex Structured Optimization Problems

    Full text link
    Nonconvex and structured optimization problems arise in many engineering applications that demand scalable and distributed solution methods. The study of the convergence properties of these methods is in general difficult due to the nonconvexity of the problem. In this paper, two distributed solution methods that combine the fast convergence properties of augmented Lagrangian-based methods with the separability properties of alternating optimization are investigated. The first method is adapted from the classic quadratic penalty function method and is called the Alternating Direction Penalty Method (ADPM). Unlike the original quadratic penalty function method, in which single-step optimizations are adopted, ADPM uses an alternating optimization, which in turn makes it scalable. The second method is the well-known Alternating Direction Method of Multipliers (ADMM). It is shown that ADPM for nonconvex problems asymptotically converges to a primal feasible point under mild conditions and an additional condition ensuring that it asymptotically reaches the standard first order necessary conditions for local optimality are introduced. In the case of the ADMM, novel sufficient conditions under which the algorithm asymptotically reaches the standard first order necessary conditions are established. Based on this, complete convergence of ADMM for a class of low dimensional problems are characterized. Finally, the results are illustrated by applying ADPM and ADMM to a nonconvex localization problem in wireless sensor networks.Comment: 13 pages, 6 figure

    A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality

    Get PDF
    Symmetric nonnegative matrix factorization (SymNMF) has important applications in data analytics problems such as document clustering, community detection and image segmentation. In this paper, we propose a novel nonconvex variable splitting method for solving SymNMF. The proposed algorithm is guaranteed to converge to the set of Karush-Kuhn-Tucker (KKT) points of the nonconvex SymNMF problem. Furthermore, it achieves a global sublinear convergence rate. We also show that the algorithm can be efficiently implemented in parallel. Further, sufficient conditions are provided which guarantee the global and local optimality of the obtained solutions. Extensive numerical results performed on both synthetic and real data sets suggest that the proposed algorithm converges quickly to a local minimum solution.Comment: IEEE Transactions on Signal Processing (to appear
    • …
    corecore