5,536 research outputs found

    Variational method for locating invariant tori

    Full text link
    We formulate a variational fictitious-time flow which drives an initial guess torus to a torus invariant under given dynamics. The method is general and applies in principle to continuous time flows and discrete time maps in arbitrary dimension, and to both Hamiltonian and dissipative systems.Comment: 10 page

    The invariant tori of knot type and the interlinked invariant tori in the Nos\'e-Hoover system

    Full text link
    We revisit the famous Nos\'e-Hoover system in this paper and show the existence of some averagely conservative regions which are filled with an infinite sequence of nested tori. Depending on initial conditions, some invariant tori are of trefoil knot type, while the others are of trivial knot type. Moreover, we present a variety of interlinked invariant tori whose initial conditions are chosen from different averagely conservative regions and give all the interlinking numbers of those interlinked tori, showing that this quadratic system possesses so rich dynamic properties.Comment: 8 pages,8 figure

    Uncontrolled spacecraft formations on two-dimensional invariant tori

    Get PDF
    Within the class of natural motions near libration point regions quasi-periodic trajectories evolving on invariant tori are studied. Those orbits prove beneficial for relative spacecraft configurations with large distances among satellites. In this study properties of invariant tori are outlined, and non-resonant and resonant tori around the Sun/Earth libration point L1 are computed. A numerical approach to obtain the frequency base and to parametrize a torus in angular phase space is introduced. Initial states for spacecraft formations on the torus’ surface are defined. The formation naturally evolve along its surface such that the relative positions within a formation are unaltered and the relative distances and the orientation are closely bounded. An in-plane coordinate frame together with a modified torus motion is introduced and the inner and outer behaviour of the formation’s geometry is investigated

    Fast iteration of cocyles over rotations and Computation of hyperbolic bundles

    Full text link
    In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of hyperbolic cocycles over a rotation. We present fast algorithms for the iteration of the quasi-periodic cocycles and the computation of the invariant bundles, which is a preliminary step for the computation of invariant whiskered tori

    Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits

    Get PDF
    A hierarchical ordering is demonstrated for the periodic orbits in a strongly coupled multidimensional Hamiltonian system, namely the hydrogen atom in crossed electric and magnetic fields. It mirrors the hierarchy of broken resonant tori and thereby allows one to characterize the periodic orbits by a set of winding numbers. With this knowledge, we construct the action variables as functions of the frequency ratios and carry out a semiclassical torus quantization. The semiclassical energy levels thus obtained agree well with exact quantum calculations

    Are ghost surfaces quadratic-flux-minimizing?

    Full text link
    Two candidates for "almost-invariant" toroidal surfaces passing through magnetic islands, namely quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits (i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbits are obtained by displacing closed field lines in the direction of steepest descent of magnetic action, ∼A⃗⋅dl\oint \vec{A}\cdot\mathbf{dl}. A generalized Hamiltonian definition of ghost surfaces is given and specialized to the usual Lagrangian definition. A modified Hamilton's Principle is introduced that allows the use of Lagrangian integration for calculation of the QFMin pseudo-orbits. Numerical calculations show QFMin and Lagrangian ghost surfaces give very similar results for a chaotic magnetic field perturbed from an integrable case, and this is explained using a perturbative construction of an auxiliary poloidal angle for which QFMin and Lagrangian ghost surfaces are the same up to second order. While presented in the context of 3-dimensional magnetic field line systems, the concepts are applicable to defining almost-invariant tori in other 11/21{1/2} degree-of-freedom nonintegrable Lagrangian/Hamiltonian systems.Comment: 8 pages, 3 figures. Revised version includes post-publication corrections in text, as described in Appendix C Erratu

    Construction of invariant whiskered tori by a parameterization method. Part I: Maps and flows in finite dimensions

    Get PDF
    We present theorems which provide the existence of invariant whiskered tori in finite-dimensional exact symplectic maps and flows. The method is based on the study of a functional equation expressing that there is an invariant torus. We show that, given an approximate solution of the invariance equation which satisfies some non-degeneracy conditions, there is a true solution nearby. We call this an {\sl a posteriori} approach. The proof of the main theorems is based on an iterative method to solve the functional equation. The theorems do not assume that the system is close to integrable nor that it is written in action-angle variables (hence we can deal in a unified way with primary and secondary tori). It also does not assume that the hyperbolic bundles are trivial and much less that the hyperbolic motion can be reduced to constant. The a posteriori formulation allows us to justify approximate solutions produced by many non-rigorous methods (e.g. formal series expansions, numerical methods). The iterative method is not based on transformation theory, but rather on succesive corrections. This makes it possible to adapt the method almost verbatim to several infinite-dimensional situations, which we will discuss in a forthcoming paper. We also note that the method leads to fast and efficient algorithms. We plan to develop these improvements in forthcoming papers.Comment: To appear in JD

    Chaos in the Gauge/Gravity Correspondence

    Full text link
    We study the motion of a string in the background of the Schwarzschild black hole in AdS_5 by applying the standard arsenal of dynamical systems. Our description of the phase space includes: the power spectrum, the largest Lyapunov exponent, Poincare sections and basins of attractions. We find convincing evidence that the motion is chaotic. We discuss the implications of some of the quantities associated with chaotic systems for aspects of the gauge/gravity correspondence. In particular, we suggest some potential relevance for the information loss paradox.Comment: 29 pages, 11 figure
    • 

    corecore