15,103 research outputs found

    Heralded multiphoton states with coherent spin interactions in waveguide QED

    Get PDF
    WaveguideQEDoffers the possibility of generating strong coherent atomic interactions either through appropriate atomic configurations in the dissipative regime or in the bandgap regime. In this work, we show how to harness these interactions in order to herald the generation of highly entangled atomic states, which afterwards can be mapped to generate single mode multi-photonic states with high fidelities.Weintroduce two protocols for the preparation of the atomic states, we discuss their performance and compare them to previous proposals. In particular, we show that one of them reaches high probability of success for systems with many atoms but low Purcell factors

    Non-adiabatic effects in periodically driven-dissipative open quantum systems

    Get PDF
    We present a general method to calculate the quasi-stationary state of a driven-dissipative system coupled to a transmission line (and more generally, to a reservoir) under periodic modulation of its parameters. Using Floquet's theorem, we formulate the differential equation for the system's density operator which has to be solved for a single period of modulation. On this basis we also provide systematic expansions in both the adiabatic and high-frequency regime. Applying our method to three different systems -- two- and three-level models as well as the driven nonlinear cavity -- we propose periodic modulation protocols of parameters leading to a temporary suppression of effective dissipation rates, and study the arising non-adiabatic features in the response of these systems.Comment: 12 pages, 8 figure

    Hydrodynamics and two-dimensional dark lump solitons for polariton superfluids

    Get PDF
    We study a two-dimensional incoherently pumped exciton-polariton condensate described by an open-dissipative Gross-Pitaevskii equation for the polariton dynamics coupled to a rate equation for the exciton density. Adopting a hydrodynamic approach, we use multiscale expansion methods to derive several models appearing in the context of shallow water waves with viscosity. In particular, we derive a Boussinesq/Benney-Luke–type equation and its far-field expansion in terms of Kadomtsev-Petviashvili-I (KP-I) equations for right- and left-going waves. From the KP-I model, we predict the existence of vorticity-free, weakly (algebraically) localized two-dimensional dark-lump solitons. We find that, in the presence of dissipation, dark lumps exhibit a lifetime three times larger than that of planar dark solitons. Direct numerical simulations show that dark lumps do exist, and their dissipative dynamics is well captured by our analytical approximation. It is also shown that lumplike and vortexlike structures can spontaneously be formed as a result of the transverse “snaking” instability of dark soliton stripes.Europe Union project AEI/FEDER: MAT2016-79866-

    Nonequilibrium Response from the dissipative Liouville Equation

    Full text link
    The problem of response of nonequilibrium systems is currently under intense investigation. We propose a general method of solution of the Liouville Equation for thermostatted particle systems subjected to external forces which retains only the slow degrees of freedom, by projecting out the majority of fast variables. Response formulae, extending the Green-Kubo relations to dissipative dynamics are provided, and comparison with numerical data is presented

    Quantum trajectories and open many-body quantum systems

    Get PDF
    The study of open quantum systems has become increasingly important in the past years, as the ability to control quantum coherence on a single particle level has been developed in a wide variety of physical systems. In quantum optics, the study of open systems goes well beyond understanding the breakdown of quantum coherence. There, the coupling to the environment is sufficiently well understood that it can be manipulated to drive the system into desired quantum states, or to project the system onto known states via feedback in quantum measurements. Many mathematical frameworks have been developed to describe such systems, which for atomic, molecular, and optical (AMO) systems generally provide a very accurate description of the open quantum system on a microscopic level. In recent years, AMO systems including cold atomic and molecular gases and trapped ions have been applied heavily to the study of many-body physics, and it has become important to extend previous understanding of open system dynamics in single- and few-body systems to this many-body context. A key formalism that has already proven very useful in this context is the quantum trajectories technique. This was developed as a numerical tool for studying dynamics in open quantum systems, and falls within a broader framework of continuous measurement theory as a way to understand the dynamics of large classes of open quantum systems. We review the progress that has been made in studying open many-body systems in the AMO context, focussing on the application of ideas from quantum optics, and on the implementation and applications of quantum trajectories methods. Control over dissipative processes promises many further tools to prepare interesting and important states in strongly interacting systems, including the realisation of parameter regimes in quantum simulators that are inaccessible via current techniques.Comment: 66 pages, 29 figures, review article submitted to Advances in Physics - comments and suggestions are welcom
    • …
    corecore