9,360 research outputs found

    Unified decoupling scheme for exchange and anisotropy contributions and temperature-dependent spectral properties of anisotropic spin systems

    Full text link
    We compute the temperature-dependent spin-wave spectrum and the magnetization for a spin system using the unified decoupling procedure for the high-order Green's functions for the exchange coupling and anisotropy, both in the classical and quantum case. Our approach allows us to establish a clear crossover between quantum-mechanical and classical methods by developing the classical analog of the quantum Green's function technique. The results are compared with the classical spectral density method and numerical modeling based on the stochastic Landau-Lifshitz equation and the Monte Carlo technique. As far as the critical temperature is concerned, there is a full agreement between the classical Green's functions technique and the classical spectral density method. However, the former method turns out to be more straightforward and more convenient than the latter because it avoids any \emph{a priori} assumptions about the system's spectral density. The temperature-dependent exchange stiffness as a function of magnetization is investigated within different approaches

    Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes

    Get PDF
    A variety of gravitational dynamics problems in asymptotically anti-de Sitter (AdS) spacetime are amenable to efficient numerical solution using a common approach involving a null slicing of spacetime based on infalling geodesics, convenient exploitation of the residual diffeomorphism freedom, and use of spectral methods for discretizing and solving the resulting differential equations. Relevant issues and choices leading to this approach are discussed in detail. Three examples, motivated by applications to non-equilibrium dynamics in strongly coupled gauge theories, are discussed as instructive test cases. These are gravitational descriptions of homogeneous isotropization, collisions of planar shocks, and turbulent fluid flows in two spatial dimensions.Comment: 70 pages, 19 figures; v4: fixed minus sign typo in last term of eqn. (3.47

    Theories of Low-Energy Quasi-Particle States in Disordered d-Wave Superconductors

    Full text link
    The physics of low-energy quasi-particle excitations in disordered d-wave superconductors is a subject of ongoing intensive research. Over the last decade, a variety of conceptually and methodologically different approaches to the problem have been developed. Unfortunately, many of these theories contradict each other, and the current literature displays a lack of consensus on even the most basic physical observables. Adopting a symmetry-oriented approach, the present paper attempts to identify the origin of the disagreement between various previous approaches, and to develop a coherent theoretical description of the different low-energy regimes realized in weakly disordered d-wave superconductors. We show that, depending on the presence or absence of time-reversal invariance and the microscopic nature of the impurities, the system falls into one of four different symmetry classes. By employing a field-theoretical formalism, we derive effective descriptions of these universal regimes as descendants of a common parent field theory of Wess-Zumino-Novikov-Witten type. As well as describing the properties of each universal regime, we analyse a number of physically relevant crossover scenarios, and discuss reasons for the disagreement between previous results. We also touch upon other aspects of the phenomenology of the d-wave superconductor such as quasi-particle localization properties, the spin quantum Hall effect, and the quasi-particle physics of the disordered vortex lattice.Comment: 42 Pages, 8 postscript figures, published version with updated reference

    Transition stages of Rayleigh–Taylor instability between miscible fluids

    Get PDF
    Direct numerical simulations (DNS) are presented of three-dimensional, Rayleigh–Taylor instability (RTI) between two incompressible, miscible fluids, with a 3:1 density ratio. Periodic boundary conditions are imposed in the horizontal directions of a rectangular domain, with no-slip top and bottom walls. Solutions are obtained for the Navier–Stokes equations, augmented by a species transport-diffusion equation, with various initial perturbations. The DNS achieved outer-scale Reynolds numbers, based on mixing-zone height and its rate of growth, in excess of 3000. Initial growth is diffusive and independent of the initial perturbations. The onset of nonlinear growth is not predicted by available linear-stability theory. Following the diffusive-growth stage, growth rates are found to depend on the initial perturbations, up to the end of the simulations. Mixing is found to be even more sensitive to initial conditions than growth rates. Taylor microscales and Reynolds numbers are anisotropic throughout the simulations. Improved collapse of many statistics is achieved if the height of the mixing zone, rather than time, is used as the scaling or progress variable. Mixing has dynamical consequences for this flow, since it is driven by the action of the imposed acceleration field on local density differences
    • …
    corecore