2,210 research outputs found

    Numerical analysis for the pure Neumann control problem using the gradient discretisation method

    Full text link
    The article discusses the gradient discretisation method (GDM) for distributed optimal control problems governed by diffusion equation with pure Neumann boundary condition. Using the GDM framework enables to develop an analysis that directly applies to a wide range of numerical schemes, from conforming and non-conforming finite elements, to mixed finite elements, to finite volumes and mimetic finite differences methods. Optimal order error estimates for state, adjoint and control variables for low order schemes are derived under standard regularity assumptions. A novel projection relation between the optimal control and the adjoint variable allows the proof of a super-convergence result for post-processed control. Numerical experiments performed using a modified active set strategy algorithm for conforming, nonconforming and mimetic finite difference methods confirm the theoretical rates of convergence

    Convergence of discrete duality finite volume schemes for the cardiac bidomain model

    Full text link
    We prove convergence of discrete duality finite volume (DDFV) schemes on distorted meshes for a class of simplified macroscopic bidomain models of the electrical activity in the heart. Both time-implicit and linearised time-implicit schemes are treated. A short description is given of the 3D DDFV meshes and of some of the associated discrete calculus tools. Several numerical tests are presented

    Fourier spectral methods for fractional-in-space reaction-diffusion equations

    Get PDF
    Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is computationally demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reactiondiffusion equations. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is show-cased by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models,together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator
    corecore