568 research outputs found

    Transport in nanofluidic systems: a review of theory and applications

    Get PDF
    In this paper transport through nanochannels is assessed, both of liquids and of dissolved molecules or ions. First, we review principles of transport at the nanoscale, which will involve the identification of important length scales where transitions in behavior occur. We also present several important consequences that a high surface-to-volume ratio has for transport. We review liquid slip, chemical equilibria between solution and wall molecules, molecular adsorption to the channel walls and wall surface roughness. We also identify recent developments and trends in the field of nanofluidics, mention key differences with microfluidic transport and review applications. Novel opportunities are emphasized, made possible by the unique behavior of liquids at the nanoscale

    Liquid cooling of non-uniform heat flux of chip circuit by submicrochannels

    Get PDF
    Sumbmicrochannels have been placed on the hotspots in a non-uniform heat generated chip circuit to increase the liquid/solid interaction area and then to enhance the heat dissipation. Main microchannels width is 185µm, which is twice the width of the submicrochannels and also includes the wall thickness of 35µm, and wall height is 500µm. The chip dimension is 10mm×10mm and the hotspot is 4mm×10m. Different positions of the hotspot have been investigated e.g. upstream, middle and downstream. Uniform heat flux is 100W/cm2 while for the hot spot is 150 W/cm2. Single channel simulation reveals that the downstream hotspot gives a lower temperature of the chip circuit surface; however the upstream hotspot has more uniform temperature distribution. A special design of manifold was adopted to ensure an equal mass distribution through the microchannels

    Optimal control-based inverse determination of electrode distribution for electroosmotic micromixer

    Get PDF
    This paper presents an optimal control-based inverse method used to determine the distribution of the electrodes for the electroosmotic micromixers with external driven flow from the inlet. Based on the optimal control method, one Dirichlet boundary control problem is constructed to inversely find the optimal distribution of the electrodes on the sidewalls of electroosmotic micromixers and achieve the acceptable mixing performance. After solving the boundary control problem, the step-shaped distribution of the external electric potential imposed on the sidewalls can be obtained and the distribution of electrodes can be inversely determined according to the obtained external electric potential. Numerical results are also provided to demonstrate the effectivity of the proposed method

    Microchannel Heat Transfer

    Get PDF

    Heat Transfer at Microscale

    Get PDF

    Microfluidic System Simulation Including the Electro-Viscous Effect

    Get PDF
    This paper describes a practical approach using a general purpose lumped-parameter computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels including electro-viscous effects due to the existence of electrical double layer (EDL). In this study, an empirical formulation for calculating an effective viscosity of ionic solutions based on dimensional analysis is described to account for surface charge and bulk fluid conductivity, which give rise to electro-viscous effect in microfluidics network. Two dimensional slit micro flow data was used to determine the model coefficients. Geometry effect is then included through a Poiseuille number correlation in GFSSP. The bi-power model was used to calculate flow distribution of isotropically etched straight channel and T-junction microflows involving ionic solutions. Performance of the proposed model is assessed against experimental test data
    • …
    corecore