12,175 research outputs found

    The exponentially convergent trapezoidal rule

    Get PDF
    It is well known that the trapezoidal rule converges geometrically when applied to analytic functions on periodic intervals or the real line. The mathematics and history of this phenomenon are reviewed and it is shown that far from being a curiosity, it is linked with computational methods all across scientific computing, including algorithms related to inverse Laplace transforms, special functions, complex analysis, rational approximation, integral equations, and the computation of functions and eigenvalues of matrices and operators

    A low-rank technique for computing the quasi-stationary distribution of subcritical Galton-Watson processes

    Get PDF
    We present a new algorithm for computing the quasi-stationary distribution of subcritical Galton--Watson branching processes. This algorithm is based on a particular discretization of a well-known functional equation that characterizes the quasi-stationary distribution of these processes. We provide a theoretical analysis of the approximate low-rank structure that stems from this discretization, and we extend the procedure to multitype branching processes. We use numerical examples to demonstrate that our algorithm is both more accurate and more efficient than other approaches

    A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics

    Get PDF
    A ``hybrid method'', dedicated to asymptotic coefficient extraction in combinatorial generating functions, is presented, which combines Darboux's method and singularity analysis theory. This hybrid method applies to functions that remain of moderate growth near the unit circle and satisfy suitable smoothness assumptions--this, even in the case when the unit circle is a natural boundary. A prime application is to coefficients of several types of infinite product generating functions, for which full asymptotic expansions (involving periodic fluctuations at higher orders) can be derived. Examples relative to permutations, trees, and polynomials over finite fields are treated in this way.Comment: 31 page

    Stability of barycentric interpolation formulas

    Get PDF
    The barycentric interpolation formula defines a stable algorithm for evaluation at points in [−1, 1] of polynomial interpolants through data on Chebyshev grids. Here it is shown that for evaluation at points in the complex plane outside [−1, 1], the algorithm becomes unstable and should be replaced by the alternative modified Lagrange or "first barycentric" formula dating to Jacobi in 1825. This difference in stability confirms the theory published by N. J. Higham in 2004 (IMA J. Numer. Anal., v. 24) and has practical consequences for computation with rational functions

    Special functions, transcendentals and their numerics

    Full text link
    Cyclotomic polylogarithms are reviewed and new results concerning the special constants that occur are presented. This also allows some comments on previous literature results using PSLQ

    Acceleration of generalized hypergeometric functions through precise remainder asymptotics

    Full text link
    We express the asymptotics of the remainders of the partial sums {s_n} of the generalized hypergeometric function q+1_F_q through an inverse power series z^n n^l \sum_k c_k/n^k, where the exponent l and the asymptotic coefficients {c_k} may be recursively computed to any desired order from the hypergeometric parameters and argument. From this we derive a new series acceleration technique that can be applied to any such function, even with complex parameters and at the branch point z=1. For moderate parameters (up to approximately ten) a C implementation at fixed precision is very effective at computing these functions; for larger parameters an implementation in higher than machine precision would be needed. Even for larger parameters, however, our C implementation is able to correctly determine whether or not it has converged; and when it converges, its estimate of its error is accurate.Comment: 36 pages, 6 figures, LaTeX2e. Fixed sign error in Eq. (2.28), added several references, added comparison to other methods, and added discussion of recursion stabilit
    • …
    corecore