1,091 research outputs found

    Certification of Bounds of Non-linear Functions: the Templates Method

    Get PDF
    The aim of this work is to certify lower bounds for real-valued multivariate functions, defined by semialgebraic or transcendental expressions. The certificate must be, eventually, formally provable in a proof system such as Coq. The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of inequalities. We introduce an approximation algorithm, which combines ideas of the max-plus basis method (in optimal control) and of the linear templates method developed by Manna et al. (in static analysis). This algorithm consists in bounding some of the constituents of the function by suprema of quadratic forms with a well chosen curvature. This leads to semialgebraic optimization problems, solved by sum-of-squares relaxations. Templates limit the blow up of these relaxations at the price of coarsening the approximation. We illustrate the efficiency of our framework with various examples from the literature and discuss the interfacing with Coq.Comment: 16 pages, 3 figures, 2 table

    Computing Dynamic Output Feedback Laws

    Full text link
    The pole placement problem asks to find laws to feed the output of a plant governed by a linear system of differential equations back to the input of the plant so that the resulting closed-loop system has a desired set of eigenvalues. Converting this problem into a question of enumerative geometry, efficient numerical homotopy algorithms to solve this problem for general Multi-Input-Multi-Output (MIMO) systems have been proposed recently. While dynamic feedback laws offer a wider range of use, the realization of the output of the numerical homotopies as a machine to control the plant in the time domain has not been addressed before. In this paper we present symbolic-numeric algorithms to turn the solution to the question of enumerative geometry into a useful control feedback machine. We report on numerical experiments with our publicly available software and illustrate its application on various control problems from the literature.Comment: 20 pages, 3 figures; the software described in this paper is publicly available via http://www.math.uic.edu/~jan/download.htm

    Topics in exact precision mathematical programming

    Get PDF
    The focus of this dissertation is the advancement of theory and computation related to exact precision mathematical programming. Optimization software based on floating-point arithmetic can return suboptimal or incorrect resulting because of round-off errors or the use of numerical tolerances. Exact or correct results are necessary for some applications. Implementing software entirely in rational arithmetic can be prohibitively slow. A viable alternative is the use of hybrid methods that use fast numerical computation to obtain approximate results that are then verified or corrected with safe or exact computation. We study fast methods for sparse exact rational linear algebra, which arises as a bottleneck when solving linear programming problems exactly. Output sensitive methods for exact linear algebra are studied. Finally, a new method for computing valid linear programming bounds is introduced and proven effective as a subroutine for solving mixed-integer linear programming problems exactly. Extensive computational results are presented for each topic.Ph.D.Committee Chair: Dr. William J. Cook; Committee Member: Dr. George Nemhauser; Committee Member: Dr. Robin Thomas; Committee Member: Dr. Santanu Dey; Committee Member: Dr. Shabbir Ahmed; Committee Member: Dr. Zonghao G
    • …
    corecore