1,086 research outputs found

    Interpretations of Association Rules by Granular Computing

    Get PDF
    We present interpretations for association rules. We first introduce Pawlak's method, and the corresponding algorithm of finding decision rules (a kind of association rules). We then use extended random sets to present a new algorithm of finding interesting rules. We prove that the new algorithm is faster than Pawlak's algorithm. The extended random sets are easily to include more than one criterion for determining interesting rules. We also provide two measures for dealing with uncertainties in association rules

    Examining Granular Computing from a Modeling Perspective

    Get PDF
    In this paper, we use a set of unified components to conduct granular modeling for problem solving paradigms in several fields of computing. Each identified component may represent a potential research direction in the field of granular computing. A granular computing model for information analysis is proposed. The model may suggest that granular computing is an instrument for implementing perception based computing based on numeric computing. In addition, a novel granular language modeling technique is proposed for information extraction from web pages. This paper also suggests that the study of data mining in the framework of granular computing may address the issues of interpretability and usage of discovered patterns

    Granular fuzzy models: a study in knowledge management in fuzzy modeling

    Get PDF
    AbstractIn system modeling, knowledge management comes vividly into the picture when dealing with a collection of individual models. These models being considered as sources of knowledge, are engaged in some collective pursuits of a collaborative development to establish modeling outcomes of global character. The result comes in the form of a so-called granular fuzzy model, which directly reflects upon and quantifies the diversity of the available sources of knowledge (local models) involved in knowledge management. In this study, several detailed algorithmic schemes are presented along with related computational aspects associated with Granular Computing. It is also shown how the construction of information granules completed through the use of the principle of justifiable granularity becomes advantageous in the realization of granular fuzzy models and a quantification of the quality (specificity) of the results of modeling. We focus on the design of granular fuzzy models considering that the locally available models are those fuzzy rule-based. It is shown that the model quantified in terms of two conflicting criteria, that is (a) a coverage criterion expressing to which extent the resulting information granules “cover” include data and (b) specificity criterion articulating how detailed (specific) the obtained information granules are. The overall quality of the granular model is also assessed by determining an area under curve (AUC) where the curve is formed in the coverage-specificity coordinates. Numeric results are discussed with intent of displaying the most essential features of the proposed methodology and algorithmic developments

    Approximations from Anywhere and General Rough Sets

    Full text link
    Not all approximations arise from information systems. The problem of fitting approximations, subjected to some rules (and related data), to information systems in a rough scheme of things is known as the \emph{inverse problem}. The inverse problem is more general than the duality (or abstract representation) problems and was introduced by the present author in her earlier papers. From the practical perspective, a few (as opposed to one) theoretical frameworks may be suitable for formulating the problem itself. \emph{Granular operator spaces} have been recently introduced and investigated by the present author in her recent work in the context of antichain based and dialectical semantics for general rough sets. The nature of the inverse problem is examined from number-theoretic and combinatorial perspectives in a higher order variant of granular operator spaces and some necessary conditions are proved. The results and the novel approach would be useful in a number of unsupervised and semi supervised learning contexts and algorithms.Comment: 20 Pages. Scheduled to appear in IJCRS'2017 LNCS Proceedings, Springe

    Sistemas granulares evolutivos

    Get PDF
    Orientador: Fernando Antonio Campos GomideTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Recentemente tem-se observado um crescente interesse em abordagens de modelagem computacional para lidar com fluxos de dados do mundo real. Métodos e algoritmos têm sido propostos para obtenção de conhecimento a partir de conjuntos de dados muito grandes e, a princípio, sem valor aparente. Este trabalho apresenta uma plataforma computacional para modelagem granular evolutiva de fluxos de dados incertos. Sistemas granulares evolutivos abrangem uma variedade de abordagens para modelagem on-line inspiradas na forma com que os humanos lidam com a complexidade. Esses sistemas exploram o fluxo de informação em ambiente dinâmico e extrai disso modelos que podem ser linguisticamente entendidos. Particularmente, a granulação da informação é uma técnica natural para dispensar atenção a detalhes desnecessários e enfatizar transparência, interpretabilidade e escalabilidade de sistemas de informação. Dados incertos (granulares) surgem a partir de percepções ou descrições imprecisas do valor de uma variável. De maneira geral, vários fatores podem afetar a escolha da representação dos dados tal que o objeto representativo reflita o significado do conceito que ele está sendo usado para representar. Neste trabalho são considerados dados numéricos, intervalares e fuzzy; e modelos intervalares, fuzzy e neuro-fuzzy. A aprendizagem de sistemas granulares é baseada em algoritmos incrementais que constroem a estrutura do modelo sem conhecimento anterior sobre o processo e adapta os parâmetros do modelo sempre que necessário. Este paradigma de aprendizagem é particularmente importante uma vez que ele evita a reconstrução e o retreinamento do modelo quando o ambiente muda. Exemplos de aplicação em classificação, aproximação de função, predição de séries temporais e controle usando dados sintéticos e reais ilustram a utilidade das abordagens de modelagem granular propostas. O comportamento de fluxos de dados não-estacionários com mudanças graduais e abruptas de regime é também analisado dentro do paradigma de computação granular evolutiva. Realçamos o papel da computação intervalar, fuzzy e neuro-fuzzy em processar dados incertos e prover soluções aproximadas de alta qualidade e sumário de regras de conjuntos de dados de entrada e saída. As abordagens e o paradigma introduzidos constituem uma extensão natural de sistemas inteligentes evolutivos para processamento de dados numéricos a sistemas granulares evolutivos para processamento de dados granularesAbstract: In recent years there has been increasing interest in computational modeling approaches to deal with real-world data streams. Methods and algorithms have been proposed to uncover meaningful knowledge from very large (often unbounded) data sets in principle with no apparent value. This thesis introduces a framework for evolving granular modeling of uncertain data streams. Evolving granular systems comprise an array of online modeling approaches inspired by the way in which humans deal with complexity. These systems explore the information flow in dynamic environments and derive from it models that can be linguistically understood. Particularly, information granulation is a natural technique to dispense unnecessary details and emphasize transparency, interpretability and scalability of information systems. Uncertain (granular) data arise from imprecise perception or description of the value of a variable. Broadly stated, various factors can affect one's choice of data representation such that the representing object conveys the meaning of the concept it is being used to represent. Of particular concern to this work are numerical, interval, and fuzzy types of granular data; and interval, fuzzy, and neurofuzzy modeling frameworks. Learning in evolving granular systems is based on incremental algorithms that build model structure from scratch on a per-sample basis and adapt model parameters whenever necessary. This learning paradigm is meaningful once it avoids redesigning and retraining models all along if the system changes. Application examples in classification, function approximation, time-series prediction and control using real and synthetic data illustrate the usefulness of the granular approaches and framework proposed. The behavior of nonstationary data streams with gradual and abrupt regime shifts is also analyzed in the realm of evolving granular computing. We shed light upon the role of interval, fuzzy, and neurofuzzy computing in processing uncertain data and providing high-quality approximate solutions and rule summary of input-output data sets. The approaches and framework introduced constitute a natural extension of evolving intelligent systems over numeric data streams to evolving granular systems over granular data streamsDoutoradoAutomaçãoDoutor em Engenharia Elétric
    corecore