283 research outputs found

    Virtual knot groups and almost classical knots

    Full text link
    We define a group-valued invariant of virtual knots and relate it to various other group-valued invariants of virtual knots, including the extended group of Silver-Williams and the quandle group of Manturov and Bardakov-Bellingeri. A virtual knot is called almost classical if it admits a diagram with an Alexander numbering, and in that case we show that the group factors as a free product of the usual knot group and Z. We establish a similar formula for mod p almost classical knots, and we use these results to derive obstructions to a virtual knot K being mod p almost classical. Viewed as knots in thickened surfaces, almost classical knots correspond to those that are homologically trivial. We show they admit Seifert surfaces and relate their Alexander invariants to the homology of the associated infinite cyclic cover. We prove the first Alexander ideal is principal, recovering a result first proved by Nakamura et al. using different methods. The resulting Alexander polynomial is shown to satisfy a skein relation, and its degree gives a lower bound for the Seifert genus. We tabulate almost classical knots up to 6 crossings and determine their Alexander polynomials and virtual genus.Comment: 44 page

    SAWdoubler: a program for counting self-avoiding walks

    Full text link
    This article presents SAWdoubler, a package for counting the total number Z(N) of self-avoiding walks (SAWs) on a regular lattice by the length-doubling method, of which the basic concept has been published previously by us. We discuss an algorithm for the creation of all SAWs of length N, efficient storage of these SAWs in a tree data structure, and an algorithm for the computation of correction terms to the count Z(2N) for SAWs of double length, removing all combinations of two intersecting single-length SAWs. We present an efficient numbering of the lattice sites that enables exploitation of symmetry and leads to a smaller tree data structure; this numbering is by increasing Euclidean distance from the origin of the lattice. Furthermore, we show how the computation can be parallelised by distributing the iterations of the main loop of the algorithm over the cores of a multicore architecture. Experimental results on the 3D cubic lattice demonstrate that Z(28) can be computed on a dual-core PC in only 1 hour and 40 minutes, with a speedup of 1.56 compared to the single-core computation and with a gain by using symmetry of a factor of 26. We present results for memory use and show how the computation is made to fit in 4 Gbyte RAM. It is easy to extend the SAWdoubler software to other lattices; it is publicly available under the GNU LGPL license.Comment: 29 pages, 3 figure

    A Time Hierarchy Theorem for the LOCAL Model

    Full text link
    The celebrated Time Hierarchy Theorem for Turing machines states, informally, that more problems can be solved given more time. The extent to which a time hierarchy-type theorem holds in the distributed LOCAL model has been open for many years. It is consistent with previous results that all natural problems in the LOCAL model can be classified according to a small constant number of complexities, such as O(1),O(logn),O(logn),2O(logn)O(1),O(\log^* n), O(\log n), 2^{O(\sqrt{\log n})}, etc. In this paper we establish the first time hierarchy theorem for the LOCAL model and prove that several gaps exist in the LOCAL time hierarchy. 1. We define an infinite set of simple coloring problems called Hierarchical 2122\frac{1}{2}-Coloring}. A correctly colored graph can be confirmed by simply checking the neighborhood of each vertex, so this problem fits into the class of locally checkable labeling (LCL) problems. However, the complexity of the kk-level Hierarchical 2122\frac{1}{2}-Coloring problem is Θ(n1/k)\Theta(n^{1/k}), for kZ+k\in\mathbb{Z}^+. The upper and lower bounds hold for both general graphs and trees, and for both randomized and deterministic algorithms. 2. Consider any LCL problem on bounded degree trees. We prove an automatic-speedup theorem that states that any randomized no(1)n^{o(1)}-time algorithm solving the LCL can be transformed into a deterministic O(logn)O(\log n)-time algorithm. Together with a previous result, this establishes that on trees, there are no natural deterministic complexities in the ranges ω(logn)\omega(\log^* n)---o(logn)o(\log n) or ω(logn)\omega(\log n)---no(1)n^{o(1)}. 3. We expose a gap in the randomized time hierarchy on general graphs. Any randomized algorithm that solves an LCL problem in sublogarithmic time can be sped up to run in O(TLLL)O(T_{LLL}) time, which is the complexity of the distributed Lovasz local lemma problem, currently known to be Ω(loglogn)\Omega(\log\log n) and O(logn)O(\log n)

    Node Balanced Steady States: Unifying and Generalizing Complex and Detailed Balanced Steady States

    Full text link
    We introduce a unifying and generalizing framework for complex and detailed balanced steady states in chemical reaction network theory. To this end, we generalize the graph commonly used to represent a reaction network. Specifically, we introduce a graph, called a reaction graph, that has one edge for each reaction but potentially multiple nodes for each complex. A special class of steady states, called node balanced steady states, is naturally associated with such a reaction graph. We show that complex and detailed balanced steady states are special cases of node balanced steady states by choosing appropriate reaction graphs. Further, we show that node balanced steady states have properties analogous to complex balanced steady states, such as uniqueness and asymptotical stability in each stoichiometric compatibility class. Moreover, we associate an integer, called the deficiency, to a reaction graph that gives the number of independent relations in the reaction rate constants that need to be satisfied for a positive node balanced steady state to exist. The set of reaction graphs (modulo isomorphism) is equipped with a partial order that has the complex balanced reaction graph as minimal element. We relate this order to the deficiency and to the set of reaction rate constants for which a positive node balanced steady state exists

    First Order Theories of Some Lattices of Open Sets

    Full text link
    We show that the first order theory of the lattice of open sets in some natural topological spaces is mm-equivalent to second order arithmetic. We also show that for many natural computable metric spaces and computable domains the first order theory of the lattice of effectively open sets is undecidable. Moreover, for several important spaces (e.g., Rn\mathbb{R}^n, n1n\geq1, and the domain PωP\omega) this theory is mm-equivalent to first order arithmetic
    corecore