414 research outputs found

    Pinning Complex Networks by a Single Controller

    Full text link
    In this paper, without assuming symmetry, irreducibility, or linearity of the couplings, we prove that a single controller can pin a coupled complex network to a homogenous solution. Sufficient conditions are presented to guarantee the convergence of the pinning process locally and globally. An effective approach to adapt the coupling strength is proposed. Several numerical simulations are given to verify our theoretical analysis

    Local pinning of networks of multi-agent systems with transmission and pinning delays

    Get PDF
    We study the stability of networks of multi-agent systems with local pinning strategies and two types of time delays, namely the transmission delay in the network and the pinning delay of the controllers. Sufficient conditions for stability are derived under specific scenarios by computing or estimating the dominant eigenvalue of the characteristic equation. In addition, controlling the network by pinning a single node is studied. Moreover, perturbation methods are employed to derive conditions in the limit of small and large pinning strengths.Numerical algorithms are proposed to verify stability, and simulation examples are presented to confirm the efficiency of analytic results.Comment: 6 pages, 3 figure

    Consensus analysis of multiagent networks via aggregated and pinning approaches

    Get PDF
    This is the post-print version of of the Article - Copyright @ 2011 IEEEIn this paper, the consensus problem of multiagent nonlinear directed networks (MNDNs) is discussed in the case that a MNDN does not have a spanning tree to reach the consensus of all nodes. By using the Lie algebra theory, a linear node-and-node pinning method is proposed to achieve a consensus of a MNDN for all nonlinear functions satisfying a given set of conditions. Based on some optimal algorithms, large-size networks are aggregated to small-size ones. Then, by applying the principle minor theory to the small-size networks, a sufficient condition is given to reduce the number of controlled nodes. Finally, simulation results are given to illustrate the effectiveness of the developed criteria.This work was jointly supported by CityU under a research grant (7002355) and GRF funding (CityU 101109)

    Towards probabilistic synchronization of local controllers

    Get PDF
    The traditional use of global and centralised control methods, fails for large, complex, noisy and highly connected systems, which typify many real world industrial and commercial systems. This paper provides an efficient bottom up design of distributed control in which many simple components communicate and cooperate to achieve a joint system goal. Each component acts individually so as to maximise personal utility whilst obtaining probabilistic information on the global system merely through local message-passing. This leads to an implied scalable and collective control strategy for complex dynamical systems, without the problems of global centralised control. Robustness is addressed by employing a fully probabilistic design, which can cope with inherent uncertainties, can be implemented adaptively and opens a systematic rich way to information sharing. This paper opens the foreseen direction and inspects the proposed design on a linearised version of coupled map lattice with spatiotemporal chaos. A version close to linear quadratic design gives an initial insight into possible behaviours of such networks

    A Fully Probabilistic Decentralised Control Design for Complex Stochastic Systems

    Get PDF
    Computational and communication complexity call for robustness of controlled systems as well as for distributed control. The proposed technical solutions in this paper are bottom up solutions where simple controllers are designed to care about individual nodes either completely independently or within various structures like cascade control. Cheap computational resources allow now the improvement of the overall behaviour of the network of such controlled loops by allowing the individual ”nodes” to share information with their neighbours without aiming at hopeless global solution. The current paper inspects this proposed method on a linearised version of coupled map lattice with spatiotemporal chaos yielding close to linear quadratic design which gives insight into possible behaviours of such networks

    Probabilistic synchronisation of pinning control

    Get PDF
    This paper is concerned with synchronization of complex stochastic dynamical networks in the presence of noise and functional uncertainty. A probabilistic control method for adaptive synchronization is presented. All required probabilistic models of the network are assumed to be unknown therefore estimated to be dependent on the connectivity strength, the state and control values. Robustness of the probabilistic controller is proved via the Liapunov method. Furthermore, based on the residual error of the network states we introduce the definition of stochastic pinning controllability. A coupled map lattice with spatiotemporal chaos is taken as an example to illustrate all theoretical developments. The theoretical derivation is complemented by its validation on two representative examples
    corecore