623 research outputs found

    Swim-like motion of bodies immersed in an ideal fluid

    Get PDF
    The connection between swimming and control theory is attracting increasing attention in the recent literature. Starting from an idea of Alberto Bressan [A. Bressan, Discrete Contin. Dyn. Syst. 20 (2008) 1\u201335]. we study the system of a planar body whose position and shape are described by a finite number of parameters, and is immersed in a 2-dimensional ideal and incompressible fluid in terms of gauge field on the space of shapes. We focus on a class of deformations measure preserving which are diffeomeorphisms whose existence is ensured by the Riemann Mapping Theorem. After making the first order expansion for small deformations, we face a crucial problem: the presence of possible non vanishing initial impulse. If the body starts with zero initial impulse we recover the results present in literature (Marsden, Munnier and oths). If instead the body starts with an initial impulse different from zero, the swimmer can self-propel in almost any direction if it can undergo shape changes without any bound on their velocity. This interesting observation, together with the analysis of the controllability of this system, seems innovative. Mathematics Subject Classification. 74F10, 74L15, 76B99, 76Z10. Received June 14, 2016. Accepted March 18, 2017. 1. Introduction In this work we are interested in studying the self-propulsion of a deformable body in a fluid. This kind of systems is attracting an increasing interest in recent literature. Many authors focus on two different type of fluids. Some of them consider swimming at micro scale in a Stokes fluid [2,4\u20136,27,35,40], because in this regime the inertial terms can be neglected and the hydrodynamic equations are linear. Others are interested in bodies immersed in an ideal incompressible fluid [8,18,23,30,33] and also in this case the hydrodynamic equations turn out to be linear. We deal with the last case, in particular we study a deformable body -typically a swimmer or a fish- immersed in an ideal and irrotational fluid. This special case has an interesting geometric nature and there is an attractive mathematical framework for it. We exploit this intrinsically geometrical structure of the problem inspired by [32,39,40], in which they interpret the system in terms of gauge field on the space of shapes. The choice of taking into account the inertia can apparently lead to a more complex system, but neglecting the viscosity the hydrodynamic equations are still linear, and this fact makes the system more manageable. The same fluid regime and existence of solutions of these hydrodynamic equations has been studied in [18] regarding the motion of rigid bodies

    Numerical controllability of the wave equation through primal methods and Carleman estimates

    Get PDF
    This paper deals with the numerical computation of boundary null controls for the 1D wave equation with a potential. The goal is to compute an approximation of controls that drive the solution from a prescribed initial state to zero at a large enough controllability time. We do not use in this work duality arguments but explore instead a direct approach in the framework of global Carleman estimates. More precisely, we consider the control that minimizes over the class of admissible null controls a functional involving weighted integrals of the state and of the control. The optimality conditions show that both the optimal control and the associated state are expressed in terms of a new variable, the solution of a fourth-order elliptic problem defined in the space-time domain. We first prove that, for some specific weights determined by the global Carleman inequalities for the wave equation, this problem is well-posed. Then, in the framework of the finite element method, we introduce a family of finite-dimensional approximate control problems and we prove a strong convergence result. Numerical experiments confirm the analysis. We complete our study with several comments

    Semi-global stabilization of linear time-delay systems with input energy constraint

    Get PDF
    This paper is concerned with semi-global stabilization of linear systems with actuator delay and energy constraints. Under the condition of null controllability by vanishing energy, the parametric Lyapunov equation based L2 low gain feedback is adopted to solve the problem. If the delay in the system is exactly known, a delay-dependent controller is designed and if the delay in the system is either time-varying or not exactly known, a delay-independent controller is established. The proposed approach is used in the linearized model of the relative motion in the orbit plane of a spacecraft with respect to another in a circular orbit around the Earth to validate its effectiveness. © 2011 IFAC.postprintThe 18th World Congress of the International Federation of Automatic Control (IFAC 2011), Milano, Italy, 28 August-2 September 2011. In Proceedings of the 18th IFAC World Congress, 2011, v. 18 pt. 1, p. 5106–511

    Linear Operator Inequality and Null Controllability with Vanishing Energy for unbounded control systems

    Get PDF
    We consider linear systems on a separable Hilbert space HH, which are null controllable at some time T0>0T_0>0 under the action of a point or boundary control. Parabolic and hyperbolic control systems usually studied in applications are special cases. To every initial state y0∈H y_0 \in H we associate the minimal "energy" needed to transfer y0 y_0 to 0 0 in a time T≥T0 T \ge T_0 ("energy" of a control being the square of its L2 L^2 norm). We give both necessary and sufficient conditions under which the minimal energy converges to 0 0 for T→+∞ T\to+\infty . This extends to boundary control systems the concept of null controllability with vanishing energy introduced by Priola and Zabczyk (Siam J. Control Optim. 42 (2003)) for distributed systems. The proofs in Priola-Zabczyk paper depend on properties of the associated Riccati equation, which are not available in the present, general setting. Here we base our results on new properties of the quadratic regulator problem with stability and the Linear Operator Inequality.Comment: In this version we have also added a section on examples and applications of our main results. This version is similar to the one which will be published on "SIAM Journal on Control and Optimization" (SIAM

    On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension

    Get PDF
    In this paper, we consider the cost of null controllability for a large class of linear equations of parabolic or dispersive type in one space dimension in small time. By extending the work of Tenenbaum and Tucsnak in "New blow-up rates for fast controls of Schr\"odinger and heat equations`", we are able to give precise upper bounds on the time-dependance of the cost of fast controls when the time of control T tends to 0. We also give a lower bound of the cost of fast controls for the same class of equations, which proves the optimality of the power of T involved in the cost of the control. These general results are then applied to treat notably the case of linear KdV equations and fractional heat or Schr\"odinger equations
    • …
    corecore