76 research outputs found

    Adaptive beamforming and switching in smart antenna systems

    Get PDF
    The ever increasing requirement for providing large bandwidth and seamless data access to commuters has prompted new challenges to wireless solution providers. The communication channel characteristics between mobile clients and base station change rapidly with the increasing traveling speed of vehicles. Smart antenna systems with adaptive beamforming and switching technology is the key component to tackle the challenges. As a spatial filter, beamformer has long been widely used in wireless communication, radar, acoustics, medical imaging systems to enhance the received signal from a particular looking direction while suppressing noise and interference from other directions. The adaptive beamforming algorithm provides the capability to track the varying nature of the communication channel characteristics. However, the conventional adaptive beamformer assumes that the Direction of Arrival (DOA) of the signal of interest changes slowly, although the interference direction could be changed dynamically. The proliferation of High Speed Rail (HSR) and seamless wireless communication between infrastructure ( roadside, trackside equipment) and the vehicles (train, car, boat etc.) brings a unique challenge for adaptive beamforming due to its rapid change of DOA. For a HSR train with 250km/h, the DOA change speed can be up to 4⁰ per millisecond. To address these unique challenges, faster algorithms to calculate the beamforming weight based on the rapid-changing DOA are needed. In this dissertation, two strategies are adopted to address the challenges. The first one is to improve the weight calculation speed. The second strategy is to improve the speed of DOA estimation for the impinging signal by leveraging on the predefined constrained route for the transportation market. Based on these concepts, various algorithms in beampattern generation and adaptive weight control are evaluated and investigated in this thesis. The well known Generalized Sidelobe Cancellation (GSC) architecture is adopted in this dissertation. But it faces serious signal cancellation problem when the estimated DOA deviates from the actual DOA which is severe in high mobility scenarios as in the transportation market. Algorithms to improve various parts of the GSC are proposed in this dissertation. Firstly, a Cyclic Variable Step Size (CVSS) algorithm for adjusting the Least Mean Square (LMS) step size with simplicity for implementation is proposed and evaluated. Secondly, a Kalman filter based solution to fuse different sensor information for a faster estimation and tracking of the DOA is investigated and proposed. Thirdly, to address the DOA mismatch issue caused by the rapid DOA change, a fast blocking matrix generation algorithm named Simplifized Zero Placement Algorithm (SZPA) is proposed to mitigate the signal cancellation in GSC. Fourthly, to make the beam pattern robust against DOA mismatch, a fast algorithm for the generation of at beam pattern named Zero Placement Flat Top (ZPFT) for the fixed beamforming path in GSC is proposed. Finally, to evaluate the effectiveness and performance of the beamforming algorithms, wireless channel simulation is needed. One of the challenging aspects for wireless simulation is the coupling between Probability Density Function (PDF) and Power Spectral Density (PSD) for a random variable. In this regard, a simplified solution to simulate Non Gaussian wireless channel is proposed, proved and evaluated for the effectiveness of the algorithm. With the above optimizations, the controlled simulation shows that the at top beampattern can be generated 380 times faster than iterative optimization method and blocking matrix can be generated 9 times faster than normal SVD method while the same overall optimum state performance can be achieved

    Unit Circle Roots Based Sensor Array Signal Processing

    Get PDF
    As technology continues to rapidly evolve, the presence of sensor arrays and the algorithms processing the data they generate take an ever-increasing role in modern human life. From remote sensing to wireless communications, the importance of sensor signal processing cannot be understated. Capon\u27s pioneering work on minimum variance distortionless response (MVDR) beamforming forms the basis of many modern sensor array signal processing (SASP) algorithms. In 2004, Steinhardt and Guerci proved that the roots of the polynomial corresponding to the optimal MVDR beamformer must lie on the unit circle, but this result was limited to only the MVDR. This dissertation contains a new proof of the unit circle roots property which generalizes to other SASP algorithms. Motivated by this result, a unit circle roots constrained (UCRC) framework for SASP is established and includes MVDR as well as single-input single-output (SISO) and distributed multiple-input multiple-output (MIMO) radar moving target detection. Through extensive simulation examples, it will be shown that the UCRC-based SASP algorithms achieve higher output gains and detection probabilities than their non-UCRC counterparts. Additional robustness to signal contamination and limited secondary data will be shown for the UCRC-based beamforming and target detection applications, respectively

    Signal processing techniques for mobile multimedia systems

    Get PDF
    Recent trends in wireless communication systems show a significant demand for the delivery of multimedia services and applications over mobile networks - mobile multimedia - like video telephony, multimedia messaging, mobile gaming, interactive and streaming video, etc. However, despite the ongoing development of key communication technologies that support these applications, the communication resources and bandwidth available to wireless/mobile radio systems are often severely limited. It is well known, that these bottlenecks are inherently due to the processing capabilities of mobile transmission systems, and the time-varying nature of wireless channel conditions and propagation environments. Therefore, new ways of processing and transmitting multimedia data over mobile radio channels have become essential which is the principal focus of this thesis. In this work, the performance and suitability of various signal processing techniques and transmission strategies in the application of multimedia data over wireless/mobile radio links are investigated. The proposed transmission systems for multimedia communication employ different data encoding schemes which include source coding in the wavelet domain, transmit diversity coding (space-time coding), and adaptive antenna beamforming (eigenbeamforming). By integrating these techniques into a robust communication system, the quality (SNR, etc) of multimedia signals received on mobile devices is maximised while mitigating the fast fading and multi-path effects of mobile channels. To support the transmission of high data-rate multimedia applications, a well known multi-carrier transmission technology known as Orthogonal Frequency Division Multiplexing (OFDM) has been implemented. As shown in this study, this results in significant performance gains when combined with other signal-processing techniques such as spa ce-time block coding (STBC). To optimise signal transmission, a novel unequal adaptive modulation scheme for the communication of multimedia data over MIMO-OFDM systems has been proposed. In this system, discrete wavelet transform/subband coding is used to compress data into their respective low-frequency and high-frequency components. Unlike traditional methods, however, data representing the low-frequency data are processed and modulated separately as they are more sensitive to the distortion effects of mobile radio channels. To make use of a desirable subchannel state, such that the quality (SNR) of the multimedia data recovered at the receiver is optimized, we employ a lookup matrix-adaptive bit and power allocation (LM-ABPA) algorithm. Apart from improving the spectral efficiency of OFDM, the modified LM-ABPA scheme, sorts and allocates subcarriers with the highest SNR to low-frequency data and the remaining to the least important data. To maintain a target system SNR, the LM-ABPA loading scheme assigns appropriate signal constella tion sizes and transmit power levels (modulation type) across all subcarriers and is adapted to the varying channel conditions such that the average system error-rate (SER/BER) is minimised. When configured for a constant data-rate load, simulation results show significant performance gains over non-adaptive systems. In addition to the above studies, the simulation framework developed in this work is applied to investigate the performance of other signal processing techniques for multimedia communication such as blind channel equalization, and to examine the effectiveness of a secure communication system based on a logistic chaotic generator (LCG) for chaos shift-keying (CSK)

    Coherent Change Detection Under a Forest Canopy

    Get PDF
    Coherent change detection (CCD) is an established technique for remotely monitoring landscapes with minimal vegetation or buildings. By evaluating the local complex correlation between a pair of synthetic aperture radar (SAR) images acquired on repeat passes of an airborne or spaceborne imaging radar system, a map of the scene coherence is obtained. Subtle disturbances of the ground are detected as areas of low coherence in the surface clutter. This thesis investigates extending CCD to monitor the ground in a forest. It is formulated as a multichannel dual-layer coherence estimation problem, where the coherence of scattering from the ground is estimated after suppressing interference from the canopy by vertically beamforming multiple image channels acquired at slightly different grazing angles on each pass. This 3D SAR beamforming must preserve the phase of the ground response. The choice of operating wavelength is considered in terms of the trade-off between foliage penetration and change sensitivity. A framework for comparing the performance of different radar designs and beamforming algorithms, as well as assessing the sensitivity to error, is built around the random-volume-over-ground (RVOG) model of forest scattering. If the ground and volume scattering contributions in the received echo are of similar strength, it is shown that an L-band array of just three channels can provide enough volume attenuation to permit reasonable estimation of the ground coherence. The proposed method is demonstrated using an RVOG clutter simulation and a modified version of the physics-based SAR image simulator PolSARproSim. Receiver operating characteristics show that whilst ordinary single-channel CCD is unusable when a canopy is present, 3D SAR CCD permits reasonable detection performance. A novel polarimetric filtering algorithm is also proposed to remove contributions from the ground-trunk double-bounce scattering mechanism, which may mask changes on the ground near trees. To enable this kind of polarimetric processing, fully polarimetric data must be acquired and calibrated. Motivated by an interim version of the Ingara airborne imaging radar, which used a pair of helical antennas to acquire circularly polarised data, techniques for the estimation of polarimetric distortion in the circular basis are investigated. It is shown that the standard approach to estimating cross-talk in the linear basis, whereby expressions for the distortion of reflection-symmetric clutter are linearised and solved, cannot be adapted to the circular basis, because the first-order effects of individual cross-talk parameters cannot be distinguished. An alternative approach is proposed that uses ordinary and gridded trihedral corner reflectors, and optionally dihedrals, to iteratively estimate the channel imbalance and cross-talk parameters. Monte Carlo simulations show that the method reliably converges to the true parameter values. Ingara data is calibrated using the method, with broadly consistent parameter estimates obtained across flights. Genuine scene changes may be masked by coherence loss that arises when the bands of spatial frequencies supported by the two passes do not match. Trimming the spatial-frequency bands to their common area of support would remove these uncorrelated contributions, but the bands, and therefore the required trim, depend on the effective collection geometry at each pixel position. The precise dependence on local slope and collection geometry is derived in this thesis. Standard methods of SAR image formation use a flat focal plane and allow only a single global trim, which leads to spatially varying coherence loss when the terrain is undulating. An image-formation algorithm is detailed that exploits the flexibility offered by back-projection not only to focus the image onto a surface matched to the scene topography but also to allow spatially adaptive trimming. Improved coherence is demonstrated in simulation and using data from two airborne radar systems.Thesis (Ph.D.) -- University of Adelaide, School of Electrical & Electronic Engineering, 202

    Estimating Sparse Representations from Dictionaries With Uncertainty

    Get PDF
    In the last two decades, sparse representations have gained increasing attention in a variety of engineering applications. A sparse representation of a signal requires a dictionary of basic elements that describe salient and discriminant features of that signal. When the dictionary is created from a mathematical model, its expressiveness depends on the quality of this model. In this dissertation, the problem of estimating sparse representations in the presence of errors and uncertainty in the dictionary is addressed. In the first part, a statistical framework for sparse regularization is introduced. The second part is concerned with the development of methodologies for estimating sparse representations from highly redundant dictionaries along with unknown dictionary parameters. The presented methods are illustrated using applications in direction finding and fiber-optic sensing. They serve as illustrative examples for investigating the abstract problems in the theory of sparse representations. Estimating a sparse representation often involves the solution of a regularized optimization problem. The presented regularization framework offers a systematic procedure for the determination of a regularization parameter that accounts for the joint effects of model errors and measurement noise. It is determined as an upper bound of the mean-squared error between the corrupted data and the ideal model. Despite proper regularization, the quality and accuracy of the obtained sparse representation remains affected by model errors and is indeed sensitive to changes in the regularization parameter. To alleviate this problem, dictionary calibration is performed. The framework is applied to the problem of direction finding. Redundancy enables the dictionary to describe a broader class of observations but also increases the similarity between different entries, which leads to ambiguous representations. To address the problem of redundancy and additional uncertainty in the dictionary parameters, two strategies are pursued. Firstly, an alternating estimation method for iteratively determining the underlying sparse representation and the dictionary parameters is presented. Also, theoretical bounds for the estimation errors are derived. Secondly, a Bayesian framework for estimating sparse representations and dictionary learning is developed. A hierarchical structure is considered to account for uncertainty in prior assumptions. The considered model for the coefficients of the sparse representation is particularly designed to handle high redundancy in the dictionary. Approximate inference is accomplished using a hybrid Markov Chain Monte Carlo algorithm. The performance and practical applicability of both methodologies is evaluated for a problem in fiber-optic sensing, where a mathematical model for the sensor signal is compiled. This model is used to generate a suitable parametric dictionary

    Joint bit allocation and precoding for filterbank transceivers in NOFDM systems

    Get PDF
    Recently, the non orthogonal frequency division multiplexing (NOFDM) systems have attracted increased interest. They have several advantages over traditional OFDM systems: higher bandwidth efficiency; reduced sensitivity to carrier frequency offsets, oscillator phase noise and narrowband interference; and reduced intersymbol/intercarrier interference (ISI/ICI). In particular, low ISI/ICI will be important for future systems where Doppler frequencies will be larger (equivalently, channel variations will be faster) due to higher carrier frequencies and higher mobile velocities. In the first part of this thesis the duality of multicarrier systems and Gabor frames is discussed and applied to the design of a generalized multicarrier system based on a filterbank structure. The efficient polyphase implementation is also discussed. In this thesis the channel capacity of a GMC systems is evaluated through the diagonalization of an equivalent matrix model where intersymbol and intercarrier interferences have been included. Exploiting the majorization theory, the mutual information can be represented as a Schur-concave function and it is maximized through a joint transceiver design adding a linear precoder at the transmitter and a LMMSE equalizer at the receiver. The capacity is derived by the eigenvalue decomposition of the global system matrix including the noise colored by the receiver filtering and employing a power allocation of the transmitted power according to the well-known water-filling solution. This thesis investigates also the behaviour of the NOFDM systems when a power and bit allocation algorithm (like the Campello one) is employed in order to satisfy a certain QoS constrain. A comparison of the performances with OFDM systems is included. Finally a simple application of the cognitive radio paradigm employing filterbankbased multicarrier systems is developed and some interesting results are showed

    Abstract neural representations of language during sentence comprehension: Evidence from MEG and Behaviour

    Get PDF

    Distance-based analysis of dynamical systems and time series by optimal transport

    Get PDF
    The concept of distance is a fundamental notion that forms a basis for the orientation in space. It is related to the scientific measurement process: quantitative measurements result in numerical values, and these can be immediately translated into distances. Vice versa, a set of mutual distances defines an abstract Euclidean space. Each system is thereby represented as a point, whose Euclidean distances approximate the original distances as close as possible. If the original distance measures interesting properties, these can be found back as interesting patterns in this space. This idea is applied to complex systems: The act of breathing, the structure and activity of the brain, and dynamical systems and time series in general. In all these situations, optimal transportation distances are used; these measure how much work is needed to transform one probability distribution into another. The reconstructed Euclidean space then permits to apply multivariate statistical methods. In particular, canonical discriminant analysis makes it possible to distinguish between distinct classes of systems, e.g., between healthy and diseased lungs. This offers new diagnostic perspectives in the assessment of lung and brain diseases, and also offers a new approach to numerical bifurcation analysis and to quantify synchronization in dynamical systems.LEI Universiteit LeidenNWO Computational Life Sciences, grant no. 635.100.006Analyse en stochastie
    • …
    corecore