722 research outputs found

    Modeling nucleosome mediated mechanisms of gene regulation

    Get PDF
    The genomes of all eukaryotic organisms are packaged into nucleosomes, which are the fundamental units of chromatin, each composed of approximately 147 base pairs of DNA wrapped around a histone octamer. Because 70-90% of the eukaryotic genome is packaged into nucleosomes they modulate accessibility of DNA to transcription factors (TFs) and play an important role in regulation of transcription. This thesis is devoted to the mathematical modeling of effects which are caused by direct competition between nucleosomes and transcription factors. The contents of the thesis are organized as follows: in chapter 1 we introduce experimental methods and recent discoveries which have been made in chromatin biology. In chapter 2 we introduce a thermodynamic biophysical model for calculating nucleosome and transcription factor occupancies. We also introduce the statistical positioning effect and how it may affect the binding of transcription factors. In chapter 2 we mostly address a question of how competition with transcription factors can affect nucleosome positioning. We first examine nucleosome experimental data and address the question of reproducibility of the data across different experiments carried out in several labs. Then, we introduce a new method for the quality assessment of the prediction of the model and use it to optimize parameters of the model to fit experimental data. We focus on how transcription factors can explain observed in vivo nucleosome positioning and which transcription factors play crucial roles in establishing nucleosome patterns at the promoters of genes. In chapter 3 we address a question of how nucleosomes and promoter architecture affect binding of TFs. We model binding of TFs in the context of chromatin to a cluster of binding sites and investigate what features of the binding site cluster determine the main characteristics of TF binding. Finally, we study how TFBSs in real genomes are positioned relative to each other and show that there are certain biases in spacing between TFBSs, probably due to effects caused by competition with nucleosomes

    Chromatin organization and transcriptional control of gene expression in Drosophila

    Get PDF
    It is increasingly clear that the packaging of DNA in nucleosome arrays serves not only to constrain the genome within the nucleus, but also to encode information concerning the activity state of the gene. Packaging limits the accessibility of many regulatory DNA sequence elements and is functionally significant in the control of transcription, replication, repair and recombination. Here, we review studies of the heat-shock genes, illustrating the formation of a specific nucleosome array at an activatable promoter, and describe present information on the roles of DNA-binding factors and energy-dependent chromatin remodeling machines in facilitating assembly of an appropriate structure. Epigenetic maintenance of the activity state within large domains appears to be a key mechanism in regulating homeotic genes during development; recent advances indicate that chromatin structural organization is a critical parameter. The ability to utilize genetic, biochemical and cytological approaches makes Drosophila an ideal organism for studies of the role of chromatin structure in the regulation of gene expression. Keywords: Cellular memory; Chromatin remodeling complexes; Gene silencing; Heat shock genes; PcG and trxG protein

    Interplay between promoter occupancy and chromatin remodeling requirements in transactivation of the S.cerevisiae PHO5 gene

    Get PDF
    In higher eukaryotes, DNA is packaged with histones and other proteins into chromatin. While this is important in the control of unwanted gene expression, chromatin also serves as a barrier to many vital functions in the cell. Therefore, cells have evolved many different types of chromatin remodeling enzymes to contend with this inhibitory structure and enable gene expression and other functions. The Saccharomyces cerevisiae PHO5 gene is triggered in response to phosphate starvation. In this study, I evaluate the chromatin remodeling requirements of this gene with respect to the multisubunit complexes SWI/SNF and SAGA. I show, for the first time, physical recruitment of SWI/SNF to the PHO5 promoter. I also demonstrate the role of promoter occupancy in influencing requirements for chromatin remodeling enzymes. Further, I describe various interactions between these two complexes at the PHO5 promoter. This study presents evidence for the first instance of excess recruitment of an ATP-dependent remodeler potentially compensating for the lack of a histone acetyltransferase

    Heterochromatin and gene regulation in Drosophila

    Get PDF
    We have recently learned more about the biochemistry of heterochromatin and about how heterochromatic environments affect gene function. New findings have emphasized the distinctions between telomeric and pericentric heterochromatin in Drosophila and have suggested a mosaic structure within pericentric heterochromatin. Theories concerning the mechanism of inactivation of euchromatic genes in heterochromatic environments have been tested using transgenes inserted into heterochromatin. The current data support a competition/chromatin structure model, in which multiprotein repressor complexes compete with transcriptional activators to assemble an active or inactive chromatin structure

    Nucleosome Distortion as a Possible Mechanism of Transcription Activation Domain Function

    Get PDF
    After more than three decades since the discovery of transcription activation domains (ADs) in gene-specific activators, the mechanism of their function remains enigmatic. The widely accepted model of direct recruitment by ADs of co-activators and basal transcriptional machinery components, however, is not always compatible with the short size yet very high degree of sequence randomness and intrinsic structural disorder of natural and synthetic ADs. In this review, we formulate the basis for an alternative and complementary model, whereby sequence randomness and intrinsic structural disorder of ADs are necessary for transient distorting interactions with promoter nucleosomes, triggering promoter nucleosome translocation and subsequently gene activation

    Toward a molecular understanding of yeast silent chromatin : roles for H4K16 acetylation and the Sir3 C-terminus

    Get PDF
    Discrete regions of the eukaryotic genome assume a heritable chromatin structure that is refractory to gene expression. In budding yeast, silent chromatin is characterized by the loading of the Silent Information Regulatory (Sir) proteins (Sir2, Sir3 and Sir4) onto unmodified nucleosomes. This requires the deacetylase activity of Sir2, extensive contacts between Sir3 and the nucleosome, as well as interactions between Sir proteins forming the Sir2-3-4 complex. During my PhD thesis I sought to advance our understanding of these phenomena from a molecular perspective. Previous studies of Sir-chromatin interactions made use of histone peptides and recombinant Sir protein fragments. This gave us an idea of possible interactions, but could not elucidate the role of histone modifications in the assembly of silent chromatin. This required that we examine nucleosomal arrays exposed to full length Sir proteins or the holo Sir complex. In Chapter 2, I made use of an in vitro reconstitution system, that allows the loading of Sir proteins (Sir3, Sir2-4 or Sir2-3-4) onto arrays of regularly spaced nucleosomes, to examine the impact of specific histone modifications (methylation of H3K79, acetylation of H3K56 and H4K16) on Sir protein binding and linker DNA accessibility. The “active” H4K16ac mark is thought to limit the loading of the Sir proteins to silent domain thus favoring the formation of silent regions indirectly by increasing Sir concentration locally. Strikingly, I found that the Sir2-4 subcomplex, unlike Sir3, has a slight higher affinity for H4K16ac-containing chromatin in vitro, consistent with H4K16ac being a substrate for Sir2. In addition the NAD-dependent deacetylation of H4K16ac promotes the binding of the holo Sir complex to chromatin beyond generating hypoacetylated histone tails. We conclude that the Sir2-dependent turnover of the “active” H4K16ac mark directly helps to seed repression. The tight association of the holo Sir complex within silent domains relies on the ability of Sir3 to bind unmodified nucleosomes. In addition, Sir3 dimerization is thought to reinforce and propagate silent domains. However, no Sir3 mutants that fail to dimerize were characterized to date. It was unclear which domain of Sir3 mediates dimerization in vivo. In Chapter 3, we present the X-ray crystal structure of the Sir3 extreme C-terminus (aa 840-978), which folds into a variant winged helix-turn-helix (Sir3 wH) and forms a stable homodimer through a large hydrophobic interface. Loss of wH homodimerization impairs holo Sir3 dimerization in vitro showing that the Sir3 wH module is key to Sir3-Sir3 interaction. Homodimerization mediated by the wH domain can be fully recapitulated by an unrelated bacterial homodimerization domain and is essential for stable association of the Sir2-3-4 complex with chromatin and the formation of silent chromatin in vivo

    Nucleosome Positioning and Its Role in Gene Regulation in Yeast

    Get PDF
    Nucleosome, composed of a 147-bp segment of DNA helix wrapped around a histone protein octamer, serves as the basic unit of chromatin. Nucleosome positioning refers to the relative position of DNA double helix with respect to the histone octamer. The positioning has an important role in transcription, DNA replication and other DNA transactions since packing DNA into nucleosomes occludes the binding site of proteins. Moreover, the nucleosomes bear histone modifications thus having a profound effect in regulation. Nucleosome positioning and its roles are extensively studied in model organism yeast. In this chapter, nucleosome organization and its roles in gene regulation are reviewed. Typically, nucleosomes are depleted around transcription start sites (TSSs), resulting in a nucleosome-free region (NFR) that is flanked by two well-positioned H2A.Z-containing nucleosomes. The nucleosomes downstream of the TSS are equally spaced in a nucleosome array. DNA sequences, especially 10–11 bp periodicities of some specific dinucleotides, partly determine the nucleosome positioning. Nucleosome occupancy can be determined with high throughput sequencing techniques. Importantly, nucleosome positions are dynamic in different cell types and different environments. Histones depletions, histones mutations, heat shock and changes in carbon source will profoundly change nucleosome organization. In the yeast cells, upon mutating the histones, the nucleosomes change drastically at promoters and the highly expressed genes, such as ribosome genes, undergo more change. The changes of nucleosomes tightly associate the transcription initiation, elongation and termination. H2A.Z is contained in the +1 and −1 nucleosomes and thus in transcription. Chaperon Chz1 and elongation factor Spt16 function in H2A.Z deposition on chromatin. The chapter covers the basic concept of nucleosomes, nucleosome determinant, the techniques of mapping nucleosomes, nucleosome alteration upon stress and mutation, and Htz1 dynamics on chromatin

    Terminate and make a loop:regulation of transcriptional directionality

    Get PDF
    Bidirectional promoters are a common feature of many eukaryotic organisms from yeast to humans. RNA Polymerase II that is recruited to this type of promoter can start transcribing in either direction using alternative DNA strands as the template. Such promiscuous transcription can lead to the synthesis of unwanted transcripts that may have negative effects on gene expression. Recent studies have identified transcription termination and gene looping as critical players in the enforcement of promoter directionality. Interestingly, both mechanisms share key components. Here, we focus on recent findings relating to the transcriptional output of bidirectional promoters

    Dynamics of chromatin and transcription during transient depletion of the RSC chromatin remodeling complex

    Get PDF
    Nucleosome organization has a key role in transcriptional regulation, yet the precise mechanisms establishing nucleosome locations and their effect on transcription are unclear. Here, we use an induced degradation system to screen all yeast ATP-dependent chromatin remodelers. We characterize how rapid clearance of the remodeler affects nucleosome locations. Specifically, depletion of Sth1, the catalytic subunit of the RSC (remodel the structure of chromatin) complex, leads to rapid fill-in of nucleosome-free regions at gene promoters. These changes are reversible upon reintroduction of Sth1 and do not depend on DNA replication. RSC-dependent nucleosome positioning is pivotal in maintaining promoters of lowly expressed genes free from nucleosomes. In contrast, we observe that upon acute stress, the RSC is not necessary for the transcriptional response. Moreover, RSC-dependent nucleosome positions are tightly related to usage of specific transcription start sites. Our results suggest organizational principles that determine nucleosome positions with and without RSC and how these interact with the transcriptional process

    Epigenetic Factors: Key Regulators Targeted in Cancers

    Get PDF
    Gene expression is tightly regulated via a myriad of mechanisms in the cell to allow canonical processes to occur. However, in the context of cancer, some of these mechanisms are dysregulated, and aberrant gene expression ensues. Some of the dysregulated mechanisms include changes to transcription factor activity, epigenetic marks (such as DNA methylation, histone modifications and chromatin state), or the stability of mRNA and protein. Disruption of these regulators would result changes in transcriptional landscape, affecting multiple pathways and eventually lead to continual cell proliferation and the formation of the tumor. Here, we discuss epigenetic factors that affect gene expression which are dysregulated in cancer, and summarize the therapeutic options available to target these factors
    corecore