131,722 research outputs found

    Protein-RNA interactions: a structural analysis

    Get PDF
    A detailed computational analysis of 32 protein-RNA complexes is presented. A number of physical and chemical properties of the intermolecular interfaces are calculated and compared with those observed in protein-double-stranded DNA and protein-single-stranded DNA complexes. The interface properties of the protein-RNA complexes reveal the diverse nature of the binding sites. van der Waals contacts played a more prevalent role than hydrogen bond contacts, and preferential binding to guanine and uracil was observed. The positively charged residue, arginine, and the single aromatic residues, phenylalanine and tyrosine, all played key roles in the RNA binding sites. A comparison between protein-RNA and protein-DNA complexes showed that whilst base and backbone contacts (both hydrogen bonding and van der Waals) were observed with equal frequency in the protein-RNA complexes, backbone contacts were more dominant in the protein-DNA complexes. Although similar modes of secondary structure interactions have been observed in RNA and DNA binding proteins, the current analysis emphasises the differences that exist between the two types of nucleic acid binding protein at the atomic contact level

    Electron microscopic visualization of tRNA genes with ferritin-avidin: biotin labels

    Get PDF
    A method is described for indirect electron microscopic visualization and mapping of tRNA and other short transcripts hybridized to DNA. This method depends upon the attachment of the electron-dense protein ferritin to the RNA, the binding being mediated by the remarkably strong association of the egg white protein avidin with biotin. Biotin is covalently attached to the 3' end of tRNA using an NH2 (CH2) 5NH2 bridge. The tRNA-biotin adduct is hybridized to complementcrry DNA sequences present in a single stranded nonhomology loop of a DNA:DNA heteroduplex. Avidin, covalently crosslinked to ferritin is mixed with the heteroduplex and becomes bound to the hybridized tRNA-biotin. Observation of the DNA:RNA-biotin:avidin-ferritin complex by electron microsdopy specifically and accurately reveals the position of the tRNA gene, with a frequency of labeling of approximately 50%

    Recruitment Studies: Manual on Precision and Accuracy of Tools

    Get PDF

    Real-time DNA microarray analysis

    Get PDF
    We present a quantification method for affinity-based DNA microarrays which is based on the real-time measurements of hybridization kinetics. This method, i.e. real-time DNA microarrays, enhances the detection dynamic range of conventional systems by being impervious to probe saturation in the capturing spots, washing artifacts, microarray spot-to-spot variations, and other signal amplitude-affecting non-idealities. We demonstrate in both theory and practice that the time-constant of target capturing in microarrays, similar to all affinity-based biosensors, is inversely proportional to the concentration of the target analyte, which we subsequently use as the fundamental parameter to estimate the concentration of the analytes. Furthermore, to empirically validate the capabilities of this method in practical applications, we present a FRET-based assay which enables the real-time detection in gene expression DNA microarrays

    On the isolation of TI-plasmid from Agrobacterium tumefaciens

    Get PDF
    An efficient lysis method for Agrobacterium cells was developed, which allows a reproducible isolation of the tumor inducing (TI)-plasmid. The lysis method is based on the sensitivity of this bacterium to incubation with lysozyme, n-dodecylamine,EDTA, followed by Sarkosyl, after growth in the presence of carbenicillin. We also present a procedure for the isolation of the TI-plasmid on a large scale, that might be used for the mass isolation of other large plasmids which like the TI-plasmid, can not be cleared with earlier described procedures. The purity of the plasmid preparations was determined with DNA renaturation kinetics, which method has the advantage that the plasmid need not to be in the supercoiled or open circular form

    Deriving a mutation index of carcinogenicity using protein structure and protein interfaces

    Get PDF
    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/
    corecore