11,504 research outputs found
Nitric acid scavenging by mineral and biomass burning aerosols
The abundance of gas phase nitric acid in the upper troposphere is overestimated by global chemistry-transport models, especially during the spring and summer seasons. Recent aircraft data obtained over the central US show that mineral aerosols were abundant in the upper troposphere during spring. Chemical reactions on mineral dust may provide an important sink for nitric acid. In regions where the mineral dust abundance is low in the upper troposphere similar HNO3 removal processes may occur on biomass burning aerosols. We propose that mineral and biomass burning aerosols may provide an important global sink for gas phase nitric acid, particularly during spring and summer when aerosol composition in the upper troposphere may be greatly affected by dust storms from east Asia or tropical biomass burning plumes
Non-linear photochemical pathways in laser induced atmospheric aerosol formation
We measured the chemical composition and the size distribution of aerosols
generated by femtosecond-Terawatt laser pulses in the atmosphere using an
aerosol mass spectrometer (AMS). We show that nitric acid condenses in the form
of ammonium nitrate, and that oxidized volatile organics also contribute to
particle growth. These two components account for two thirds and one third,
respectively, of the dry laser-condensed mass. They appear in two different
modes centred at 380 nm and 150 nm. The number concentration of particles
between 25 and 300 nm increases by a factor of 15. Pre-existing water droplets
strongly increase the oxidative properties of the laser-activated atmosphere,
substantially enhancing the condensation of organics under laser illumination.Comment: 19 pages, 5 figure
Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B
In-situ airborne measurements of trace gases, aerosol size distributions, chemistry and optical properties were conducted over Mexico and the Eastern North Pacific during MILAGRO and INTEX-B. Heterogeneous reactions between secondary aerosol precursor gases and mineral dust lead to sequestration of sulfur, nitrogen and chlorine in the supermicrometer particulate size range.
Simultaneous measurements of aerosol size distributions and weak-acid soluble calcium result in an estimate of 11 wt% of CaCO_3 for Asian dust. During transport across the North Pacific, ~5–30% of the CaCO_3 is converted to CaSO_4 or Ca(NO_3)_2 with an additional ~4% consumed through reactions with HCl. The 1996 to 2008 record from the Mauna Loa Observatory confirm these findings, indicating that, on average, 19% of the CaCO_3 has reacted to form CaSO_4 and 7% has reacted to form Ca(NO_3)_2 and ~2% has reacted with HCl. In the nitrogen-oxide rich boundary layer near Mexico City up to 30% of the CaCO_3 has reacted to form Ca(NO_3)_2 while an additional 8% has reacted with HCl.
These heterogeneous reactions can result in a ~3% increase in dust solubility which has an insignificant effect on their optical properties compared to their variability in-situ. However, competition between supermicrometer dust and submicrometer primary aerosol for condensing secondary aerosol species led to a 25% smaller number median diameter for the accumulation mode aerosol. A 10–25% reduction of accumulation mode number median diameter results in a 30–70% reduction in submicrometer light scattering at relative humidities in the 80–95% range. At 80% RH submicrometer light scattering is only reduced ~3% due to a higher mass fraction of hydrophobic refractory components in the dust-affected accumulation mode aerosol. Thus reducing the geometric mean diameter of the submicrometer aerosol has a much larger effect on aerosol optical properties than changes to the hygroscopic:hydrophobic mass fractions of the accumulation mode aerosol.
In the presence of dust, nitric acid concentrations are reduced to 85% to 60–80% in the presence of dust. These observations support previous model studies which predict irreversible sequestration of reactive nitrogen species through heterogeneous reactions with mineral dust during long-range transport
Efflorescence of Ammonium Sulfate and Coated Ammonium Sulfate Particles: Evidence for Surface Nucleation
Using optical microscopy, we investigated the efflorescence of ammonium sulfate (AS) in aqueous AS and in aqueous 1:1 and 8:1 (by dry weight) poly(ethylene glycol)-400 (PEG-400)/AS particles deposited on a hydrophobically coated slide. Aqueous PEG-400/AS particles exposed to decreasing relative humidity (RH) exhibit a liquid−liquid phase separation below 90% RH with the PEG-400-rich phase surrounding the aqueous AS inner phase. Pure aqueous AS particles effloresced in the RH range from 36.3% to 43.7%, in agreement with literature data (31−48% RH). In contrast, aqueous 1:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 7.2 to 19.2 μm effloresced between 26.8% and 33.9% RH and aqueous 8:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 1.8 to 7.3 μm between 24.3% and 29.3% RH. Such low efflorescence relative humidity (ERH) values have never been reached before for AS particles of this size range. We show that these unprecedented low ERHs of AS in PEG-400/AS particles could not possibly be explained by the presence of low amounts of PEG-400 in the aqueous AS phase, by a potential inhibition of water evaporation via anomalously slow diffusion through the PEG coating, or by different time scales between various experimental techniques. High-speed photography of the efflorescence process allowed the development of the AS crystallization fronts within the particles to be monitored with millisecond time resolution. The nucleation sites were inferred from the initial crystal growth sites. Analysis of the probability distribution of initial sites of 31 and 19 efflorescence events for pure AS and 1:1 (by dry weight) PEG-400/AS particles, respectively, showed that the particle volume can be excluded as the preferred nucleation site in the case of pure AS particles. For aqueous 1:1 (by dry weight) PEG-400/AS particles preferential AS nucleation in the PEG phase and at the PEG/AS/substrate contact line can be excluded. On the basis of this probability analysis of efflorescence events together with the AS ERH values of pure aqueous AS and aqueous PEG-400/AS particles aforementioned, we suggest that in pure aqueous AS particles nucleation starts at the surface of the particles and attribute the lower ERH values observed for aqueous PEG-400/AS particles to the suppression of the surface-induced nucleation process. Our results suggest that surface-induced nucleation is likely to also occur during the efflorescence of atmospheric AS aerosol particles, possibly constituting the dominating nucleation pathway
Production of calcium carbonate from steelmaking slag and captured CO2- optimisation of the carbonation process and product quality
The X2PCC pilot plant produces precipitated calcium carbonate (PCC) from calcium extracted from steel slag and CO2 gas. This work investigates the carbonation process in order to optimise it to produce PCC of the desired morphology and size. A literature review is presented showing the potential effects of different parameters on the morphology, size and quality of the PCC produced. Experiments are conducted varying different parameters and the morphology and size of the PCC are analysed based on this. Supersaturation is seen as key to understanding and controlling the process, so a model is built to show the supersaturation of the system. This involves activity coefficient modelling using the Pitzer model and estimations of the CO2 solubility and solubility product, Ksp. Pure rhombohedral calcite is produced and needle-like aragonite is produced up to a purity of 70%
Three-dimensional simulations of inorganic aerosol distributions in east Asia during spring 2001
In this paper, aerosol composition and size distributions in east Asia are simulated using a comprehensive chemical transport model. Three-dimensional aerosol simulations for the TRACE-P and ACE-Asia periods are performed and used to help interpret actual observations. The regional chemical transport model, STEM-2K3, which includes the on-line gas-aerosol thermodynamic module SCAPE II, and explicitly considers chemical aging of dust, is used in the analysis. The model is found to represent many of the important observed features. The Asian outflow during March and April of 2001 is heavily polluted with high aerosol loadings. Under conditions of low dust loading, SO_2 condensation and gas phase ammonia distribution determine the nitrate size and gas-aerosol distributions along air mass trajectories, a situation that is analyzed in detail for two TRACE-P flights. Dust is predicted to alter the partitioning of the semivolatile components between the gas and aerosol phases as well as the size distributions of the secondary aerosol constituents. Calcium in the dust affects the gas-aerosol equilibrium by shifting the equilibrium balance to an anion-limited status, which benefits the uptake of sulfate and nitrate, but reduces the amount of aerosol ammonium. Surface reactions on dust provide an additional mechanism to produce aerosol nitrate and sulfate. The size distribution of dust is shown to be a critical factor in determining the size distribution of secondary aerosols. As much of the dust mass is found in the supermicron mode (70–90%), appreciable amounts of sulfate and nitrate are found in the supermicron particles. For sulfate the observations and the analysis indicate that 10–30% of sulfate is in the supermicron fraction during dust events; in the case of nitrate, more than 80% is found in the supermicron fraction
Relationships of Biomass-Burning Aerosols to Ice in Orographic Wave Clouds
Ice concentrations in orographic wave clouds at temperatures between −24° and −29°C were shown to be related to aerosol characteristics in nearby clear air during five research flights over the Rocky Mountains. When clouds with influence from colder temperatures were excluded from the dataset, mean ice nuclei and cloud ice number concentrations were very low, on the order of 1–5 L^(−1). In this environment, ice number concentrations were found to be significantly correlated with the number concentration of larger particles, those larger than both 0.1- and 0.5-μm diameter. A variety of complementary techniques was used to measure aerosol size distributions and chemical composition. Strong correlations were also observed between ice concentrations and the number concentrations of soot and biomass-burning aerosols. Ice nuclei concentrations directly measured in biomass-burning plumes were the highest detected during the project. Taken together, this evidence indicates a potential role for biomass-burning aerosols in ice formation, particularly in regions with relatively low concentrations of other ice nucleating aerosols
Observation of playa salts as nuclei in orographic wave clouds
During the Ice in Clouds Experiment-Layer Clouds (ICE-L), dry lakebed, or playa, salts from the Great Basin region of the United States were observed as cloud nuclei in orographic wave clouds over Wyoming. Using a counterflow virtual impactor in series with a single-particle mass spectrometer, sodium-potassium-magnesium-calcium-chloride salts were identified as residues of cloud droplets. Importantly, these salts produced similar mass spectral signatures to playa salts with elevated cloud condensation nuclei (CCN) efficiencies close to sea salt. Using a suite of chemical characterization instrumentation, the playa salts were observed to be internally mixed with oxidized organics, presumably produced by cloud processing, as well as carbonate. These salt particles were enriched as residues of large droplets (>19 μm) compared to smaller droplets (>7 μm). In addition, a small fraction of silicate-containing playa salts were hypothesized to be important in the observed heterogeneous ice nucleation processes. While the high CCN activity of sea salt has been demonstrated to play an important role in cloud formation in marine environments, this study provides direct evidence of the importance of playa salts in cloud formation in continental North America has not been shown previously. Studies are needed to model and quantify the impact of playas on climate globally, particularly because of the abundance of playas and expected increases in the frequency and intensity of dust storms in the future due to climate and land use changes
Understanding the chemistry of atmospheric aerosol particle formation via observations of physical properties
It is widely accepted that the global climate is heating up due to human activities, such as burning of fossil fuels. Therefore we find ourselves forced to make decisions on what measures, if any, need to be taken to decrease our warming effect on the planet before any irrevocable damage occurs. Research is being conducted in a variety of fields to better understand all relevant processes governing Earth s climate, and to assess the relative roles of anthropogenic and biogenic emissions into the atmosphere. One of the least well quantified problems is the impact of small aerosol particles (both of anthropogenic and biogenic origin) on climate, through reflecting solar radiation and their ability to act as condensation nuclei for cloud droplets. In this thesis, the compounds driving the biogenic formation of new particles in the atmosphere have been examined through detailed measurements.
As directly measuring the composition of these newly formed particles is extremely difficult, the approach was to indirectly study their different characteristics by measuring the hygroscopicity (water uptake) and volatility (evaporation) of particles between 10 and 50 nm. To study the first steps of the formation process in the sub-3 nm range, the nucleation of gaseous precursors to small clusters, the chemical composition of ambient naturally charged ions were measured.
The ion measurements were performed with a newly developed mass spectrometer, which was first characterized in the laboratory before being deployed at a boreal forest measurement site. It was also successfully compared to similar, low-resolution instruments. The ambient measurements showed that sulfuric acid clusters dominate the negative ion spectrum during new particle formation events. Sulfuric acid/ammonia clusters were detected in ambient air for the first time in this work.
Even though sulfuric acid is believed to be the most important gas phase precursor driving the initial cluster formation, measurements of the hygroscopicity and volatility of growing 10-50 nm particles in Hyytiälä showed an increasing role of organic vapors of a variety of oxidation levels.
This work has provided additional insights into the compounds participating both in the initial formation and subsequent growth of atmospheric new aerosol particles. It will hopefully prove an important step in understanding atmospheric gas-to-particle conversion, which, by influencing cloud properties, can have important climate impacts. All available knowledge needs to be constantly updated, summarized, and brought to the attention of our decision-makers. Only by increasing our understanding of all the relevant processes can we build reliable models to predict the long-term effects of decisions made today.Brännandet av stora mängder fossila bränslen under de senaste århundraden har ökat koldioxidhalten i luften, vilket tros leda till en växthuseffekt som värmer vår planet. Atmosfären är dock ett oerhört komplicerat system där samarbete mellan en mängd olika forskningsgrenar krävs för att förstå alla relevanta processer. En ju mer komplett bild av atmosfären vi har, desto sannolikare kan vi göra de rätta besluten för att trygga vår framtid.
En av de processer som anses vara av stor betydelse, men som har visat sig mycket svår att kvantifiera, är aerosolpartiklarnas inverkan på jordens strålningsbalans. Aerosolpartiklar är små luftburna partiklar i antingen fast form eller vätskeform som kan direkt reflektera solljus tillbaka ut i rymden eller fungera som kärnor för molndroppar. Höga halter partiklar leder till flera, men mindre, molndroppar, som i sin tur leder till ljusare och mer långlivade moln som effektivt reflekterar solens strålning och därmed ger upphov till en nedkylande effekt.
Aerosolpartiklar produceras både i naturen och av människan, och för att förstå följderna av ökad eller minskad antropogen partikelproduktion måste vi först förstå den naturliga produktionen. Denna avhandling har fokuserat på att ge insikt i den kemiska sammansättningen av de allra minsta (pienempi kuin 50 nm i diameter) partiklarna i situationer där nya partiklar bildas genom nukleation och kondensation av gasmolekyler. P.g.a. de väldigt små massorna hos dessa partiklar, är det mycket svårt att direkt mäta deras kemiska sammansättning. I detta arbete har indirekta metoder använts för att få information om vad partiklarna kan innehålla. Partiklarnas hygroskopisitet, d.v.s. deras förmåga att uppta vatten, samt deras volatilitet, d.v.s. mängden material som förångas från partiklarna vid upphettning, uppmättes i ett barrskogsområde i södra Finland. Därtill studerades sammansättningen hos luftens joner under partikelformation på samma ställe.
Resultaten av de indirekta mätningarna tyder på att nukleationsprocessen domineras av svavelsyra som bildar kluster, möjligen stabiliserade av baser såsom ammoniak, som senare växer genom kondensation. Kondensationen som leder till 10-50 nm stora partiklar är dock dominerad av oxiderade organiska föreningar. Dessa organiska föreningar härstammar sannolikt från kolväten som avgetts från de omkringliggande träden, medan svavelsyran, som produceras genom oxidering av svaveldioxid, kan vara influerad av människan.
Denna avhandling är ett litet, men viktigt, steg framåt i vår strävan efter en kvantitativ förståelse över hur aerosolpartiklarna inverkar på jordens klimat. Den förståelsen kommer, i sin tur, att hjälpa oss att producera pålitligare klimatmodeller som kan förutspå framtida klimat på basen av olika utsläppsscenarier
- …
