11 research outputs found

    Discriminant Analysis via Joint Euler Transform and â„“2, 1-Norm

    Get PDF
    Linear discriminant analysis (LDA) has been widely used for face recognition. However, when identifying faces in the wild, the existence of outliers that deviate significantly from the rest of the data can arbitrarily skew the desired solution. This usually deteriorates LDA’s performance dramatically, thus preventing it from mass deployment in real-world applications. To handle this problem, we propose an effective distance metric learning method-based LDA, namely, Euler LDA-L21 (e-LDA-L21). e-LDA-L21 is carried out in two stages, in which each image is mapped into a complex space by Euler transform in the first stage and the ℓ2,1 -norm is adopted as the distance metric in the second stage. This not only reveals nonlinear features but also exploits the geometric structure of data. To solve e-LDA-L21 efficiently, we propose an iterative algorithm, which is a closed-form solution at each iteration with convergence guaranteed. Finally, we extend e-LDA-L21 to Euler 2DLDA-L21 (e-2DLDA-L21) which further exploits the spatial information embedded in image pixels. Experimental results on several face databases demonstrate its superiority over the state-of-the-art algorithms

    Integrating joint feature selection into subspace learning: A formulation of 2DPCA for outliers robust feature selection

    Full text link
    © 2019 Elsevier Ltd Since the principal component analysis and its variants are sensitive to outliers that affect their performance and applicability in real world, several variants have been proposed to improve the robustness. However, most of the existing methods are still sensitive to outliers and are unable to select useful features. To overcome the issue of sensitivity of PCA against outliers, in this paper, we introduce two-dimensional outliers-robust principal component analysis (ORPCA) by imposing the joint constraints on the objective function. ORPCA relaxes the orthogonal constraints and penalizes the regression coefficient, thus, it selects important features and ignores the same features that exist in other principal components. It is commonly known that square Frobenius norm is sensitive to outliers. To overcome this issue, we have devised an alternative way to derive objective function. Experimental results on four publicly available benchmark datasets show the effectiveness of joint feature selection and provide better performance as compared to state-of-the-art dimensionality-reduction methods

    Principal Component Analysis

    Get PDF
    This book is aimed at raising awareness of researchers, scientists and engineers on the benefits of Principal Component Analysis (PCA) in data analysis. In this book, the reader will find the applications of PCA in fields such as image processing, biometric, face recognition and speech processing. It also includes the core concepts and the state-of-the-art methods in data analysis and feature extraction

    Decomposition and classification of electroencephalography data

    Get PDF

    Contribution to supervised representation learning: algorithms and applications.

    Get PDF
    278 p.In this thesis, we focus on supervised learning methods for pattern categorization. In this context, itremains a major challenge to establish efficient relationships between the discriminant properties of theextracted features and the inter-class sparsity structure.Our first attempt to address this problem was to develop a method called "Robust Discriminant Analysiswith Feature Selection and Inter-class Sparsity" (RDA_FSIS). This method performs feature selectionand extraction simultaneously. The targeted projection transformation focuses on the most discriminativeoriginal features while guaranteeing that the extracted (or transformed) features belonging to the sameclass share a common sparse structure, which contributes to small intra-class distances.In a further study on this approach, some improvements have been introduced in terms of theoptimization criterion and the applied optimization process. In fact, we proposed an improved version ofthe original RDA_FSIS called "Enhanced Discriminant Analysis with Class Sparsity using GradientMethod" (EDA_CS). The basic improvement is twofold: on the first hand, in the alternatingoptimization, we update the linear transformation and tune it with the gradient descent method, resultingin a more efficient and less complex solution than the closed form adopted in RDA_FSIS.On the other hand, the method could be used as a fine-tuning technique for many feature extractionmethods. The main feature of this approach lies in the fact that it is a gradient descent based refinementapplied to a closed form solution. This makes it suitable for combining several extraction methods andcan thus improve the performance of the classification process.In accordance with the above methods, we proposed a hybrid linear feature extraction scheme called"feature extraction using gradient descent with hybrid initialization" (FE_GD_HI). This method, basedon a unified criterion, was able to take advantage of several powerful linear discriminant methods. Thelinear transformation is computed using a descent gradient method. The strength of this approach is thatit is generic in the sense that it allows fine tuning of the hybrid solution provided by different methods.Finally, we proposed a new efficient ensemble learning approach that aims to estimate an improved datarepresentation. The proposed method is called "ICS Based Ensemble Learning for Image Classification"(EM_ICS). Instead of using multiple classifiers on the transformed features, we aim to estimate multipleextracted feature subsets. These were obtained by multiple learned linear embeddings. Multiple featuresubsets were used to estimate the transformations, which were ranked using multiple feature selectiontechniques. The derived extracted feature subsets were concatenated into a single data representationvector with strong discriminative properties.Experiments conducted on various benchmark datasets ranging from face images, handwritten digitimages, object images to text datasets showed promising results that outperformed the existing state-ofthe-art and competing methods

    Structured representation learning from complex data

    Full text link
    This thesis advances several theoretical and practical aspects of the recently introduced restricted Boltzmann machine - a powerful probabilistic and generative framework for modelling data and learning representations. The contributions of this study represent a systematic and common theme in learning structured representations from complex data
    corecore