2,110 research outputs found

    Autocalibrating and Calibrationless Parallel Magnetic Resonance Imaging as a Bilinear Inverse Problem

    Full text link
    Modern reconstruction methods for magnetic resonance imaging (MRI) exploit the spatially varying sensitivity profiles of receive-coil arrays as additional source of information. This allows to reduce the number of time-consuming Fourier-encoding steps by undersampling. The receive sensitivities are a priori unknown and influenced by geometry and electric properties of the (moving) subject. For optimal results, they need to be estimated jointly with the image from the same undersampled measurement data. Formulated as an inverse problem, this leads to a bilinear reconstruction problem related to multi-channel blind deconvolution. In this work, we will discuss some recently developed approaches for the solution of this problem.Comment: 3 pages, 3 figures, 12th International Conference on Sampling Theory and Applications, Tallinn 201

    Joint Reconstruction of Multi-channel, Spectral CT Data via Constrained Total Nuclear Variation Minimization

    Full text link
    We explore the use of the recently proposed "total nuclear variation" (TNV) as a regularizer for reconstructing multi-channel, spectral CT images. This convex penalty is a natural extension of the total variation (TV) to vector-valued images and has the advantage of encouraging common edge locations and a shared gradient direction among image channels. We show how it can be incorporated into a general, data-constrained reconstruction framework and derive update equations based on the first-order, primal-dual algorithm of Chambolle and Pock. Early simulation studies based on the numerical XCAT phantom indicate that the inter-channel coupling introduced by the TNV leads to better preservation of image features at high levels of regularization, compared to independent, channel-by-channel TV reconstructions.Comment: Submitted to Physics in Medicine and Biolog

    Coherence retrieval using trace regularization

    Full text link
    The mutual intensity and its equivalent phase-space representations quantify an optical field's state of coherence and are important tools in the study of light propagation and dynamics, but they can only be estimated indirectly from measurements through a process called coherence retrieval, otherwise known as phase-space tomography. As practical considerations often rule out the availability of a complete set of measurements, coherence retrieval is usually a challenging high-dimensional ill-posed inverse problem. In this paper, we propose a trace-regularized optimization model for coherence retrieval and a provably-convergent adaptive accelerated proximal gradient algorithm for solving the resulting problem. Applying our model and algorithm to both simulated and experimental data, we demonstrate an improvement in reconstruction quality over previous models as well as an increase in convergence speed compared to existing first-order methods.Comment: 28 pages, 10 figures, accepted for publication in SIAM Journal on Imaging Science
    • …
    corecore