554 research outputs found

    Adaptive Locality Preserving Regression

    Full text link
    This paper proposes a novel discriminative regression method, called adaptive locality preserving regression (ALPR) for classification. In particular, ALPR aims to learn a more flexible and discriminative projection that not only preserves the intrinsic structure of data, but also possesses the properties of feature selection and interpretability. To this end, we introduce a target learning technique to adaptively learn a more discriminative and flexible target matrix rather than the pre-defined strict zero-one label matrix for regression. Then a locality preserving constraint regularized by the adaptive learned weights is further introduced to guide the projection learning, which is beneficial to learn a more discriminative projection and avoid overfitting. Moreover, we replace the conventional `Frobenius norm' with the special l21 norm to constrain the projection, which enables the method to adaptively select the most important features from the original high-dimensional data for feature extraction. In this way, the negative influence of the redundant features and noises residing in the original data can be greatly eliminated. Besides, the proposed method has good interpretability for features owing to the row-sparsity property of the l21 norm. Extensive experiments conducted on the synthetic database with manifold structure and many real-world databases prove the effectiveness of the proposed method.Comment: The paper has been accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), and the code can be available at https://drive.google.com/file/d/1iNzONkRByIaUhXwdEhOkkh_0d2AAXNE8/vie

    Integrating joint feature selection into subspace learning: A formulation of 2DPCA for outliers robust feature selection

    Full text link
    © 2019 Elsevier Ltd Since the principal component analysis and its variants are sensitive to outliers that affect their performance and applicability in real world, several variants have been proposed to improve the robustness. However, most of the existing methods are still sensitive to outliers and are unable to select useful features. To overcome the issue of sensitivity of PCA against outliers, in this paper, we introduce two-dimensional outliers-robust principal component analysis (ORPCA) by imposing the joint constraints on the objective function. ORPCA relaxes the orthogonal constraints and penalizes the regression coefficient, thus, it selects important features and ignores the same features that exist in other principal components. It is commonly known that square Frobenius norm is sensitive to outliers. To overcome this issue, we have devised an alternative way to derive objective function. Experimental results on four publicly available benchmark datasets show the effectiveness of joint feature selection and provide better performance as compared to state-of-the-art dimensionality-reduction methods

    Flexible unsupervised feature extraction for image classification

    Get PDF
    Dimensionality reduction is one of the fundamental and important topics in the fields of pattern recognition and machine learning. However, most existing dimensionality reduction methods aim to seek a projection matrix W such that the projection W T x is exactly equal to the true low-dimensional representation. In practice, this constraint is too rigid to well capture the geometric structure of data. To tackle this problem, we relax this constraint but use an elastic one on the projection with the aim to reveal the geometric structure of data. Based on this context, we propose an unsupervised dimensionality reduction model named flexible unsupervised feature extraction (FUFE) for image classification. Moreover, we theoretically prove that PCA and LPP, which are two of the most representative unsupervised dimensionality reduction models, are special cases of FUFE, and propose a non-iterative algorithm to solve it. Experiments on five real-world image databases show the effectiveness of the proposed model

    Graph-based Semi-supervised Learning: Algorithms and Applications.

    Get PDF
    114 p.Graph-based semi-supervised learning have attracted large numbers of researchers and it is an important part of semi-supervised learning. Graph construction and semi-supervised embedding are two main steps in graph-based semi-supervised learning algorithms. In this thesis, we proposed two graph construction algorithms and two semi-supervised embedding algorithms. The main work of this thesis is summarized as follows:1. A new graph construction algorithm named Graph construction based on self-representativeness and Laplacian smoothness (SRLS) and several variants are proposed. Researches show that the coefficients obtained by data representation algorithms reflect the similarity between data samples and can be considered as a measurement of the similarity. This kind of measurement can be used for the weights of the edges between data samples in graph construction. Each column of the coefficient matrix obtained by data self-representation algorithms can be regarded as a new representation of original data. The new representations should have common features as the original data samples. Thus, if two data samples are close to each other in the original space, the corresponding representations should be highly similar. This constraint is called Laplacian smoothness.SRLS graph is based on l2-norm minimized data self-representation and Laplacian smoothness. Since the representation matrix obtained by l2 minimization is dense, a two phrase SRLS method (TPSRLS) is proposed to increase the sparsity of graph matrix. By extending the linear space to Hilbert space, two kernelized versions of SRLS are proposed. Besides, a direct solution to kernelized SRLS algorithm is also introduced.2. A new sparse graph construction algorithm named Sparse graph with Laplacian smoothness (SGLS) and several variants are proposed. SGLS graph algorithm is based on sparse representation and use Laplacian smoothness as a constraint (SGLS). A kernelized version of the SGLS algorithm and a direct solution to kernelized SGLS algorithm are also proposed. 3. SPP is a successful unsupervised learning method. To extend SPP to a semi-supervised embedding method, we introduce the idea of in-class constraints in CGE into SPP and propose a new semi-supervised method for data embedding named Constrained Sparsity Preserving Embedding (CSPE).4. The weakness of CSPE is that it cannot handle the new coming samples which means a cascade regression should be performed after the non-linear mapping is obtained by CSPE over the whole training samples. Inspired by FME, we add a regression term in the objective function to obtain an approximate linear projection simultaneously when non-linear embedding is estimated and proposed Flexible Constrained Sparsity Preserving Embedding (FCSPE).Extensive experiments on several datasets (including facial images, handwriting digits images and objects images) prove that the proposed algorithms can improve the state-of-the-art results

    Graph-based Semi-supervised Learning: Algorithms and Applications.

    Get PDF
    114 p.Graph-based semi-supervised learning have attracted large numbers of researchers and it is an important part of semi-supervised learning. Graph construction and semi-supervised embedding are two main steps in graph-based semi-supervised learning algorithms. In this thesis, we proposed two graph construction algorithms and two semi-supervised embedding algorithms. The main work of this thesis is summarized as follows:1. A new graph construction algorithm named Graph construction based on self-representativeness and Laplacian smoothness (SRLS) and several variants are proposed. Researches show that the coefficients obtained by data representation algorithms reflect the similarity between data samples and can be considered as a measurement of the similarity. This kind of measurement can be used for the weights of the edges between data samples in graph construction. Each column of the coefficient matrix obtained by data self-representation algorithms can be regarded as a new representation of original data. The new representations should have common features as the original data samples. Thus, if two data samples are close to each other in the original space, the corresponding representations should be highly similar. This constraint is called Laplacian smoothness.SRLS graph is based on l2-norm minimized data self-representation and Laplacian smoothness. Since the representation matrix obtained by l2 minimization is dense, a two phrase SRLS method (TPSRLS) is proposed to increase the sparsity of graph matrix. By extending the linear space to Hilbert space, two kernelized versions of SRLS are proposed. Besides, a direct solution to kernelized SRLS algorithm is also introduced.2. A new sparse graph construction algorithm named Sparse graph with Laplacian smoothness (SGLS) and several variants are proposed. SGLS graph algorithm is based on sparse representation and use Laplacian smoothness as a constraint (SGLS). A kernelized version of the SGLS algorithm and a direct solution to kernelized SGLS algorithm are also proposed. 3. SPP is a successful unsupervised learning method. To extend SPP to a semi-supervised embedding method, we introduce the idea of in-class constraints in CGE into SPP and propose a new semi-supervised method for data embedding named Constrained Sparsity Preserving Embedding (CSPE).4. The weakness of CSPE is that it cannot handle the new coming samples which means a cascade regression should be performed after the non-linear mapping is obtained by CSPE over the whole training samples. Inspired by FME, we add a regression term in the objective function to obtain an approximate linear projection simultaneously when non-linear embedding is estimated and proposed Flexible Constrained Sparsity Preserving Embedding (FCSPE).Extensive experiments on several datasets (including facial images, handwriting digits images and objects images) prove that the proposed algorithms can improve the state-of-the-art results

    Learning Robust and Discriminative Subspace With Low-Rank Constraints

    Get PDF
    IEEE Transactions on Neural Networks and Learning SystemsThe article of record as published may be found at http://dx.doi.org/10.1109/tnnls.2015.2464090In this paper, we aim at learning robust and discriminative subspaces from noisy data. Subspace learning is widely used in extracting discriminative features for classifica- tion. However, when data are contaminated with severe noise, the performance of most existing subspace learning methods would be limited. Recent advances in low-rank modeling provide effective solutions for removing noise or outliers contained in sample sets, which motivates us to take advantage of low-rank constraints in order to exploit robust and discriminative subspace for classification. In particular, we present a discriminative subspace learning method called the supervised regularization- based robust subspace (SRRS) approach, by incorporating the low-rank constraint. SRRS seeks low-rank representations from the noisy data, and learns a discriminative subspace from the recovered clean data jointly. A supervised regularization function is designed to make use of the class label information, and therefore to enhance the discriminability of subspace. Our approach is formulated as a constrained rank-minimization problem. We design an inexact augmented Lagrange multiplier optimization algorithm to solve it. Unlike the existing sparse representation and low-rank learning methods, our approach learns a low-dimensional subspace from recovered data, and explicitly incorporates the supervised information. Our approach and some baselines are evaluated on the COIL-100, ALOI, Extended YaleB, FERET, AR, and KinFace databases. The exper- imental results demonstrate the effectiveness of our approach, especially when the data contain considerable noise or variations.Funded by Naval Postgraduate SchoolNational Science Foundation Computer and Network SystemsONR Young InvestigatorOffice of Naval ResearchU.S. Army Research Office Young Investigato
    corecore