3,328 research outputs found

    Nowhere-Zero Flow Polynomials

    Get PDF
    In this article we introduce the flow polynomial of a digraph and use it to study nowhere-zero flows from a commutative algebraic perspective. Using Hilbert's Nullstellensatz, we establish a relation between nowhere-zero flows and dual flows. For planar graphs this gives a relation between nowhere-zero flows and flows of their planar duals. It also yields an appealing proof that every bridgeless triangulated graph has a nowhere-zero four-flow

    The Number of Nowhere-Zero Flows on Graphs and Signed Graphs

    Get PDF
    A nowhere-zero kk-flow on a graph Γ\Gamma is a mapping from the edges of Γ\Gamma to the set \{\pm1, \pm2, ..., \pm(k-1)\} \subset \bbZ such that, in any fixed orientation of Γ\Gamma, at each node the sum of the labels over the edges pointing towards the node equals the sum over the edges pointing away from the node. We show that the existence of an \emph{integral flow polynomial} that counts nowhere-zero kk-flows on a graph, due to Kochol, is a consequence of a general theory of inside-out polytopes. The same holds for flows on signed graphs. We develop these theories, as well as the related counting theory of nowhere-zero flows on a signed graph with values in an abelian group of odd order. Our results are of two kinds: polynomiality or quasipolynomiality of the flow counting functions, and reciprocity laws that interpret the evaluations of the flow polynomials at negative integers in terms of the combinatorics of the graph.Comment: 17 pages, to appear in J. Combinatorial Th. Ser.

    Enumerating Colorings, Tensions and Flows in Cell Complexes

    Get PDF
    We study quasipolynomials enumerating proper colorings, nowhere-zero tensions, and nowhere-zero flows in an arbitrary CW-complex XX, generalizing the chromatic, tension and flow polynomials of a graph. Our colorings, tensions and flows may be either modular (with values in Z/kZ\mathbb{Z}/k\mathbb{Z} for some kk) or integral (with values in {−k+1,…,k−1}\{-k+1,\dots,k-1\}). We obtain deletion-contraction recurrences and closed formulas for the chromatic, tension and flow quasipolynomials, assuming certain unimodularity conditions. We use geometric methods, specifically Ehrhart theory and inside-out polytopes, to obtain reciprocity theorems for all of the aforementioned quasipolynomials, giving combinatorial interpretations of their values at negative integers as well as formulas for the numbers of acyclic and totally cyclic orientations of XX.Comment: 28 pages, 3 figures. Final version, to appear in J. Combin. Theory Series

    Flows on Simplicial Complexes

    Full text link
    Given a graph GG, the number of nowhere-zero \ZZ_q-flows ϕG(q)\phi_G(q) is known to be a polynomial in qq. We extend the definition of nowhere-zero \ZZ_q-flows to simplicial complexes Δ\Delta of dimension greater than one, and prove the polynomiality of the corresponding function ϕΔ(q)\phi_{\Delta}(q) for certain qq and certain subclasses of simplicial complexes.Comment: 10 pages, to appear in Discrete Mathematics and Theoretical Computer Science (proceedings of FPSAC'12

    Bounds on the Coefficients of Tension and Flow Polynomials

    Full text link
    The goal of this article is to obtain bounds on the coefficients of modular and integral flow and tension polynomials of graphs. To this end we make use of the fact that these polynomials can be realized as Ehrhart polynomials of inside-out polytopes. Inside-out polytopes come with an associated relative polytopal complex and, for a wide class of inside-out polytopes, we show that this complex has a convex ear decomposition. This leads to the desired bounds on the coefficients of these polynomials.Comment: 16 page

    Is the five-flow conjecture almost false?

    Get PDF
    The number of nowhere zero Z_Q flows on a graph G can be shown to be a polynomial in Q, defining the flow polynomial \Phi_G(Q). According to Tutte's five-flow conjecture, \Phi_G(5) > 0 for any bridgeless G.A conjecture by Welsh that \Phi_G(Q) has no real roots for Q \in (4,\infty) was recently disproved by Haggard, Pearce and Royle. These authors conjectured the absence of roots for Q \in [5,\infty). We study the real roots of \Phi_G(Q) for a family of non-planar cubic graphs known as generalised Petersen graphs G(m,k). We show that the modified conjecture on real flow roots is also false, by exhibiting infinitely many real flow roots Q>5 within the class G(nk,k). In particular, we compute explicitly the flow polynomial of G(119,7), showing that it has real roots at Q\approx 5.0000197675 and Q\approx 5.1653424423. We moreover prove that the graph families G(6n,6) and G(7n,7) possess real flow roots that accumulate at Q=5 as n\to\infty (in the latter case from above and below); and that Q_c(7)\approx 5.2352605291 is an accumulation point of real zeros of the flow polynomials for G(7n,7) as n\to\infty.Comment: 44 pages (LaTeX2e). Includes tex file, three sty files, and a mathematica script polyG119_7.m. Many improvements from version 3, in particular Sections 3 and 4 have been mostly re-writen, and Sections 7 and 8 have been eliminated. (This material can now be found in arXiv:1303.5210.) Final version published in J. Combin. Theory
    • …
    corecore