4,080 research outputs found

    Flows and bisections in cubic graphs

    Get PDF
    A kk-weak bisection of a cubic graph GG is a partition of the vertex-set of GG into two parts V1V_1 and V2V_2 of equal size, such that each connected component of the subgraph of GG induced by ViV_i (i=1,2i=1,2) is a tree of at most k−2k-2 vertices. This notion can be viewed as a relaxed version of nowhere-zero flows, as it directly follows from old results of Jaeger that every cubic graph GG with a circular nowhere-zero rr-flow has a ⌊r⌋\lfloor r \rfloor-weak bisection. In this paper we study problems related to the existence of kk-weak bisections. We believe that every cubic graph which has a perfect matching, other than the Petersen graph, admits a 4-weak bisection and we present a family of cubic graphs with no perfect matching which do not admit such a bisection. The main result of this article is that every cubic graph admits a 5-weak bisection. When restricted to bridgeless graphs, that result would be a consequence of the assertion of the 5-flow Conjecture and as such it can be considered a (very small) step toward proving that assertion. However, the harder part of our proof focuses on graphs which do contain bridges.Comment: 14 pages, 6 figures - revised versio

    Nowhere-Zero 3-Flows in Signed Graphs

    Get PDF
    Tutte observed that every nowhere-zero kk-flow on a plane graph gives rise to a kk-vertex-coloring of its dual, and vice versa. Thus nowhere-zero integer flow and graph coloring can be viewed as dual concepts. Jaeger further shows that if a graph GG has a face-kk-colorable 2-cell embedding in some orientable surface, then it has a nowhere-zero kk-flow. However, if the surface is nonorientable, then a face-kk-coloring corresponds to a nowhere-zero kk-flow in a signed graph arising from GG. Graphs embedded in orientable surfaces are therefore a special case that the corresponding signs are all positive. In this paper, we prove that if an 8-edge-connected signed graph admits a nowhere-zero integer flow, then it has a nowhere-zero 3-flow. Our result extends Thomassen\u27s 3-flow theorem on 8-edge-connected graphs to the family of all 8-edge-connected signed graphs. And it also improves Zhu\u27s 3-flow theorem on 11-edge-connected signed graphs

    Nowhere-Zero 5-Flows On Cubic Graphs with Oddness 4

    Get PDF
    Tutte’s 5-flow conjecture from 1954 states that every bridge- less graph has a nowhere-zero 5-flow. It suffices to prove the conjecture for cyclically 6-edge-connected cubic graphs. We prove that every cyclically 6-edge-connected cubic graph with oddness at most 4 has a nowhere-zero 5-flow. This implies that every minimum counterexample to the 5-flow conjecture has oddness at least 6
    • …
    corecore