2,122 research outputs found

    Novelty-driven cooperative coevolution

    Get PDF
    Cooperative coevolutionary algorithms (CCEAs) rely on multiple coevolving populations for the evolution of solutions composed of coadapted components. CCEAs enable, for instance, the evolution of cooperative multiagent systems composed of heterogeneous agents, where each agent is modelled as a component of the solution. Previous works have, however, shown that CCEAs are biased toward stability: the evolutionary process tends to converge prematurely to stable states instead of (near-)optimal solutions. In this study, we show how novelty search can be used to avoid the counterproductive attraction to stable states in coevolution. Novelty search is an evolutionary technique that drives evolution toward behavioural novelty and diversity rather than exclusively pursuing a static objective. We evaluate three novelty-based approaches that rely on, respectively (1) the novelty of the team as a whole, (2) the novelty of the agents’ individual behaviour, and (3) the combination of the two. We compare the proposed approaches with traditional fitness-driven cooperative coevolution in three simulated multirobot tasks. Our results show that team-level novelty scoring is the most effective approach, significantly outperforming fitness-driven coevolution at multiple levels. Novelty-driven cooperative coevolution can substantially increase the potential of CCEAs while maintaining a computational complexity that scales well with the number of populations.info:eu-repo/semantics/publishedVersio

    Cooperative coevolution of control for a real multirobot system

    Get PDF
    The potential of cooperative coevolutionary algorithms (CCEAs) as a tool for evolving control for heterogeneous multirobot teams has been shown in several previous works. The vast majority of these works have, however, been confined to simulation-based experiments. In this paper, we present one of the first demonstrations of a real multirobot system, operating outside laboratory conditions, with controllers synthesised by CCEAs. We evolve control for an aquatic multirobot system that has to perform a cooperative predator-prey pursuit task. The evolved controllers are transferred to real hardware, and their performance is assessed in a non-controlled outdoor environment. Two approaches are used to evolve control: a standard fitness-driven CCEA, and novelty-driven coevolution. We find that both approaches are able to evolve teams that transfer successfully to the real robots. Novelty-driven coevolution is able to evolve a broad range of successful team behaviours, which we test on the real multirobot system.info:eu-repo/semantics/acceptedVersio

    Cooperative coevolution of morphologically heterogeneous robots

    Get PDF
    Morphologically heterogeneous multirobot teams have shown significant potential in many applications. While cooperative coevolutionary algorithms can be used for synthesising controllers for heterogeneous multirobot systems, they have been almost exclusively applied to morphologically homogeneous systems. In this paper, we investigate if and how cooperative coevolutionary algorithms can be used to evolve behavioural control for a morphologically heterogeneous multirobot system. Our experiments rely on a simulated task, where a ground robot with a simple sensor-actuator configuration must cooperate tightly with a more complex aerial robot to find and collect items in the environment. We first show how differences in the number and complexity of skills each robot has to learn can impair the effectiveness of cooperative coevolution. We then show how coevolution’s effectiveness can be improved using incremental evolution or novelty-driven coevolution. Despite its limitations, we show that coevolution is a viable approach for synthesising control for morphologically heterogeneous systems.info:eu-repo/semantics/publishedVersio

    Novelty Search in Competitive Coevolution

    Get PDF
    One of the main motivations for the use of competitive coevolution systems is their ability to capitalise on arms races between competing species to evolve increasingly sophisticated solutions. Such arms races can, however, be hard to sustain, and it has been shown that the competing species often converge prematurely to certain classes of behaviours. In this paper, we investigate if and how novelty search, an evolutionary technique driven by behavioural novelty, can overcome convergence in coevolution. We propose three methods for applying novelty search to coevolutionary systems with two species: (i) score both populations according to behavioural novelty; (ii) score one population according to novelty, and the other according to fitness; and (iii) score both populations with a combination of novelty and fitness. We evaluate the methods in a predator-prey pursuit task. Our results show that novelty-based approaches can evolve a significantly more diverse set of solutions, when compared to traditional fitness-based coevolution.Comment: To appear in 13th International Conference on Parallel Problem Solving from Nature (PPSN 2014

    Avoiding convergence in cooperative coevolution with novelty search

    Get PDF
    Cooperative coevolution is an approach for evolving solutions composed of coadapted components. Previous research has shown, however, that cooperative coevolutionary algorithms are biased towards stability: they tend to converge prematurely to equilibrium states, instead of converging to optimal or near-optimal solutions. In single-population evolutionary algorithms, novelty search has been shown capable of avoiding premature convergence to local optima — a pathology similar to convergence to equilibrium states. In this study, we demonstrate how novelty search can be applied to cooperative coevolution by proposing two new algorithms. The first algorithm promotes behavioural novelty at the team level (NS-T), while the second promotes novelty at the individual agent level (NS-I). The proposed algorithms are evaluated in two popular multiagent tasks: predator-prey pursuit and keepaway soccer. An analysis of the explored collaboration space shows that (i) fitnessbased evolution tends to quickly converge to poor equilibrium states, (ii) NS-I almost never reaches any equilibrium state due to constant change in the individual populations, while (iii) NS-T explores a variety of equilibrium states in each evolutionary run and thus significantly outperforms both fitness-based evolution and NS-I.info:eu-repo/semantics/acceptedVersio

    Novelty search in competitive coevolution

    Get PDF
    One of the main motivations for the use of competitive coevolution systems is their ability to capitalise on arms races between competing species to evolve increasingly sophisticated solutions. Such arms races can, however, be hard to sustain, and it has been shown that the competing species often converge prematurely to certain classes of behaviours. In this paper, we investigate if and how novelty search, an evolutionary technique driven by behavioural novelty, can overcome convergence in coevolution. We propose three methods for applying novelty search to coevolutionary systems with two species: (i) score both populations according to behavioural novelty; (ii) score one population according to novelty, and the other according to fitness; and (iii) score both populations with a combination of novelty and fitness. We evaluate the methods in a predator-prey pursuit task. Our results show that novelty-based approaches can evolve a significantly more diverse set of solutions, when compared to traditional fitness-based coevolution.info:eu-repo/semantics/acceptedVersio

    Open-ended Search through Minimal Criterion Coevolution

    Get PDF
    Search processes guided by objectives are ubiquitous in machine learning. They iteratively reward artifacts based on their proximity to an optimization target, and terminate upon solution space convergence. Some recent studies take a different approach, capitalizing on the disconnect between mainstream methods in artificial intelligence and the field\u27s biological inspirations. Natural evolution has an unparalleled propensity for generating well-adapted artifacts, but these artifacts are decidedly non-convergent. This new class of non-objective algorithms induce a divergent search by rewarding solutions according to their novelty with respect to prior discoveries. While the diversity of resulting innovations exhibit marked parallels to natural evolution, the methods by which search is driven remain unnatural. In particular, nature has no need to characterize and enforce novelty; rather, it is guided by a single, simple constraint: survive long enough to reproduce. The key insight is that such a constraint, called the minimal criterion, can be harnessed in a coevolutionary context where two populations interact, finding novel ways to satisfy their reproductive constraint with respect to each other. Among the contributions of this dissertation, this approach, called minimal criterion coevolution (MCC), is the primary (1). MCC is initially demonstrated in a maze domain (2) where it evolves increasingly complex mazes and solutions. An enhancement to the initial domain (3) is then introduced, allowing mazes to expand unboundedly and validating MCC\u27s propensity for open-ended discovery. A more natural method of diversity preservation through resource limitation (4) is introduced and shown to maintain population diversity without comparing genetic distance. Finally, MCC is demonstrated in an evolutionary robotics domain (5) where it coevolves increasingly complex bodies with brain controllers to achieve principled locomotion. The overall benefit of these contributions is a novel, general, algorithmic framework for the continual production of open-ended dynamics without the need for a characterization of behavioral novelty
    corecore