40,154 research outputs found

    Global Impact Balancing in the Hierarchic Genetic Search

    Get PDF
    The new Globally Balanced Hierarchic Genetic Strategy (GB-HGS) was introduced as a tool for solving difficult global optimization problems. This strategy provides a multi-deme economic stochastic search with an adaptive accuracy that allows many local extremes of the objective to be found. The strategy was designed according to the Multi Agent System (MAS) paradigm. The novelty of GB-HGS derives from its control of the search impact performed by various demes on the basis of the global information gathered and exchanged among the computing agents. This mechanism is applied together with the local profiling of the computational process already used in the previous versions of hierarchic genetic computations. The new strategy exhibits better efficiency, especially in the second phase of computations, when the promising regions containing the global extremes are encountered

    Discovering Evolutionary Stepping Stones through Behavior Domination

    Full text link
    Behavior domination is proposed as a tool for understanding and harnessing the power of evolutionary systems to discover and exploit useful stepping stones. Novelty search has shown promise in overcoming deception by collecting diverse stepping stones, and several algorithms have been proposed that combine novelty with a more traditional fitness measure to refocus search and help novelty search scale to more complex domains. However, combinations of novelty and fitness do not necessarily preserve the stepping stone discovery that novelty search affords. In several existing methods, competition between solutions can lead to an unintended loss of diversity. Behavior domination defines a class of algorithms that avoid this problem, while inheriting theoretical guarantees from multiobjective optimization. Several existing algorithms are shown to be in this class, and a new algorithm is introduced based on fast non-dominated sorting. Experimental results show that this algorithm outperforms existing approaches in domains that contain useful stepping stones, and its advantage is sustained with scale. The conclusion is that behavior domination can help illuminate the complex dynamics of behavior-driven search, and can thus lead to the design of more scalable and robust algorithms.Comment: To Appear in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2017

    Planning as Optimization: Dynamically Discovering Optimal Configurations for Runtime Situations

    Full text link
    The large number of possible configurations of modern software-based systems, combined with the large number of possible environmental situations of such systems, prohibits enumerating all adaptation options at design time and necessitates planning at run time to dynamically identify an appropriate configuration for a situation. While numerous planning techniques exist, they typically assume a detailed state-based model of the system and that the situations that warrant adaptations are known. Both of these assumptions can be violated in complex, real-world systems. As a result, adaptation planning must rely on simple models that capture what can be changed (input parameters) and observed in the system and environment (output and context parameters). We therefore propose planning as optimization: the use of optimization strategies to discover optimal system configurations at runtime for each distinct situation that is also dynamically identified at runtime. We apply our approach to CrowdNav, an open-source traffic routing system with the characteristics of a real-world system. We identify situations via clustering and conduct an empirical study that compares Bayesian optimization and two types of evolutionary optimization (NSGA-II and novelty search) in CrowdNav

    Multi-criteria Evolution of Neural Network Topologies: Balancing Experience and Performance in Autonomous Systems

    Full text link
    Majority of Artificial Neural Network (ANN) implementations in autonomous systems use a fixed/user-prescribed network topology, leading to sub-optimal performance and low portability. The existing neuro-evolution of augmenting topology or NEAT paradigm offers a powerful alternative by allowing the network topology and the connection weights to be simultaneously optimized through an evolutionary process. However, most NEAT implementations allow the consideration of only a single objective. There also persists the question of how to tractably introduce topological diversification that mitigates overfitting to training scenarios. To address these gaps, this paper develops a multi-objective neuro-evolution algorithm. While adopting the basic elements of NEAT, important modifications are made to the selection, speciation, and mutation processes. With the backdrop of small-robot path-planning applications, an experience-gain criterion is derived to encapsulate the amount of diverse local environment encountered by the system. This criterion facilitates the evolution of genes that support exploration, thereby seeking to generalize from a smaller set of mission scenarios than possible with performance maximization alone. The effectiveness of the single-objective (optimizing performance) and the multi-objective (optimizing performance and experience-gain) neuro-evolution approaches are evaluated on two different small-robot cases, with ANNs obtained by the multi-objective optimization observed to provide superior performance in unseen scenarios

    Unsupervised Feature Learning through Divergent Discriminative Feature Accumulation

    Full text link
    Unlike unsupervised approaches such as autoencoders that learn to reconstruct their inputs, this paper introduces an alternative approach to unsupervised feature learning called divergent discriminative feature accumulation (DDFA) that instead continually accumulates features that make novel discriminations among the training set. Thus DDFA features are inherently discriminative from the start even though they are trained without knowledge of the ultimate classification problem. Interestingly, DDFA also continues to add new features indefinitely (so it does not depend on a hidden layer size), is not based on minimizing error, and is inherently divergent instead of convergent, thereby providing a unique direction of research for unsupervised feature learning. In this paper the quality of its learned features is demonstrated on the MNIST dataset, where its performance confirms that indeed DDFA is a viable technique for learning useful features.Comment: Corrected citation formattin

    Optimization as a design strategy. Considerations based on building simulation-assisted experiments about problem decomposition

    Full text link
    In this article the most fundamental decomposition-based optimization method - block coordinate search, based on the sequential decomposition of problems in subproblems - and building performance simulation programs are used to reason about a building design process at micro-urban scale and strategies are defined to make the search more efficient. Cyclic overlapping block coordinate search is here considered in its double nature of optimization method and surrogate model (and metaphore) of a sequential design process. Heuristic indicators apt to support the design of search structures suited to that method are developed from building-simulation-assisted computational experiments, aimed to choose the form and position of a small building in a plot. Those indicators link the sharing of structure between subspaces ("commonality") to recursive recombination, measured as freshness of the search wake and novelty of the search moves. The aim of these indicators is to measure the relative effectiveness of decomposition-based design moves and create efficient block searches. Implications of a possible use of these indicators in genetic algorithms are also highlighted.Comment: 48 pages. 12 figures, 3 table
    • …
    corecore