3,355 research outputs found

    Learning to Generate 3D Training Data

    Full text link
    Human-level visual 3D perception ability has long been pursued by researchers in computer vision, computer graphics, and robotics. Recent years have seen an emerging line of works using synthetic images to train deep networks for single image 3D perception. Synthetic images rendered by graphics engines are a promising source for training deep neural networks because it comes with perfect 3D ground truth for free. However, the 3D shapes and scenes to be rendered are largely made manual. Besides, it is challenging to ensure that synthetic images collected this way can help train a deep network to perform well on real images. This is because graphics generation pipelines require numerous design decisions such as the selection of 3D shapes and the placement of the camera. In this dissertation, we propose automatic generation pipelines of synthetic data that aim to improve the task performance of a trained network. We explore both supervised and unsupervised directions for automatic optimization of 3D decisions. For supervised learning, we demonstrate how to optimize 3D parameters such that a trained network can generalize well to real images. We first show that we can construct a pure synthetic 3D shape to achieve state-of-the-art performance on a shape-from-shading benchmark. We further parameterize the decisions as a vector and propose a hybrid gradient approach to efficiently optimize the vector towards usefulness. Our hybrid gradient is able to outperform classic black-box approaches on a wide selection of 3D perception tasks. For unsupervised learning, we propose a novelty metric for 3D parameter evolution based on deep autoregressive models. We show that without any extrinsic motivation, the novelty computed from autoregressive models alone is helpful. Our novelty metric can consistently encourage a random synthetic generator to produce more useful training data for downstream 3D perception tasks.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163240/1/ydawei_1.pd

    Learning Representations for Novelty and Anomaly Detection

    Get PDF
    The problem of novelty or anomaly detection refers to the ability to automatically identify data samples that differ from a notion of normality. Techniques that address this problem are necessary in many applications, like in medical diagnosis, autonomous driving, fraud detection, or cyber-attack detection, just to mention a few. The problem is inherently challenging because of the openness of the space of distributions that characterize novelty or outlier data points. This is often matched with the inability to adequately represent such distributions due to the lack of representative data. In this dissertation we address the challenge above by making several contributions. (a)We introduce an unsupervised framework for novelty detection, which is based on deep learning techniques, and which does not require labeled data representing the distribution of outliers. (b) The framework is general and based on first principles by detecting anomalies via computing their probabilities according to the distribution representing normality. (c) The framework can handle high-dimensional data such as images, by performing a non-linear dimensionality reduction of the input space into an isometric lower-dimensional space, leading to a computationally efficient method. (d) The framework is guarded from the potential inclusion of distributions of outliers into the distribution of normality by favoring that only inlier data can be well represented by the model. (e) The methods are evaluated extensively on multiple computer vision benchmark datasets, where it is shown that they compare favorably with the state of the art

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit

    Effizientes und stabiles online Lernen fĂĽr "Developmental Robots"

    Get PDF
    Recent progress in robotics and cognitive science has inspired a new generation of more versatile robots, so-called developmental robots. Many learning approaches for these robots are inspired by developmental processes and learning mechanisms observed in children. It is widely accepted that developmental robots must autonomously develop, acquire their skills, and cope with unforeseen challenges in unbounded environments through lifelong learning. Continuous online adaptation and intrinsically motivated learning are thus essential capabilities for these robots. However, the high sample-complexity of online learning and intrinsic motivation methods impedes the efficiency and practical feasibility of these methods for lifelong learning. Consequently, the majority of previous work has been demonstrated only in simulation. This thesis devises new methods and learning schemes to mitigate this problem and to permit direct online training on physical robots. A novel intrinsic motivation method is developed to drive the robot’s exploration to efficiently select what to learn. This method combines new knowledge-based and competence-based signals to increase sample-efficiency and to enable lifelong learning. While developmental robots typically acquire their skills through self-exploration, their autonomous development could be accelerated by additionally learning from humans. Yet there is hardly any research to integrate intrinsic motivation with learning from a teacher. The thesis therefore establishes a new learning scheme to integrate intrinsic motivation with learning from observation. The underlying exploration mechanism in the proposed learning schemes relies on Goal Babbling as a goal-directed method for learning direct inverse robot models online, from scratch, and in a learning while behaving fashion. Online learning of multiple solutions for redundant robots with this framework was missing. This thesis devises an incremental online associative network to enable simultaneous exploration and solution consolidation and establishes a new technique to stabilize the learning system. The proposed methods and learning schemes are demonstrated for acquiring reaching skills. Their efficiency, stability, and applicability are benchmarked in simulation and demonstrated on a physical 7-DoF Baxter robot arm.Jüngste Entwicklungen in der Robotik und den Kognitionswissenschaften haben zu einer Generation von vielseitigen Robotern geführt, die als ”Developmental Robots” bezeichnet werden. Lernverfahren für diese Roboter sind inspiriert von Lernmechanismen, die bei Kindern beobachtet wurden. ”Developmental Robots” müssen autonom Fertigkeiten erwerben und unvorhergesehene Herausforderungen in uneingeschränkten Umgebungen durch lebenslanges Lernen meistern. Kontinuierliches Anpassen und Lernen durch intrinsische Motivation sind daher wichtige Eigenschaften. Allerdings schränkt der hohe Aufwand beim Generieren von Datenpunkten die praktische Nutzbarkeit solcher Verfahren ein. Daher wurde ein Großteil nur in Simulationen demonstriert. In dieser Arbeit werden daher neue Methoden konzipiert, um dieses Problem zu meistern und ein direktes Online-Training auf realen Robotern zu ermöglichen. Dazu wird eine neue intrinsisch motivierte Methode entwickelt, die während der Umgebungsexploration effizient auswählt, was gelernt wird. Sie kombiniert neue wissens- und kompetenzbasierte Signale, um die Sampling-Effizienz zu steigern und lebenslanges Lernen zu ermöglichen. Während ”Developmental Robots” Fertigkeiten durch Selbstexploration erwerben, kann ihre Entwicklung durch Lernen durch Beobachten beschleunigt werden. Dennoch gibt es kaum Arbeiten, die intrinsische Motivation mit Lernen von interagierenden Lehrern verbinden. Die vorliegende Arbeit entwickelt ein neues Lernschema, das diese Verbindung schafft. Der in den vorgeschlagenen Lernmethoden genutzte Explorationsmechanismus beruht auf Goal Babbling, einer zielgerichteten Methode zum Lernen inverser Modelle, die online-fähig ist, kein Vorwissen benötigt und Lernen während der Ausführung von Bewegungen ermöglicht. Das Online-Lernen mehrerer Lösungen inverser Modelle redundanter Roboter mit Goal Babbling wurde bisher nicht erforscht. In dieser Arbeit wird dazu ein inkrementell lernendes, assoziatives neuronales Netz entwickelt und eine Methode konzipiert, die es stabilisiert. Das Netz ermöglicht deren gleichzeitige Exploration und Konsolidierung. Die vorgeschlagenen Verfahren werden für das Greifen nach Objekten demonstriert. Ihre Effizienz, Stabilität und Anwendbarkeit werden simulativ verglichen und mit einem Roboter mit sieben Gelenken demonstriert

    Out-of-class novelty generation: an experimental foundation *

    Get PDF
    International audienceConstructive machine learning aims at finding one or more instances of a domain which will exhibit some desired properties. Such a process bears a strong similarity with a design process where the ultimate objective is the generation of previously unknown and novel objects by using knowledge about known objects. The aim of the present work is to bring ideas from design theory to machine learning and elaborate an experimental procedure allowing the study of design through machine learning approaches. To this end, we propose an actionable definition of creativity as the generation of out-of-distribution novelty. We assess several metrics designed for evaluating the quality of generative models on this new task. Through extensive experiments on various types of generative models, we find architectures and hyperparameter combinations which lead to out-of-distribution novelty. Such generators can then be used to search a semantically richer and broader space than standard generative models would allow
    • …
    corecore