90,751 research outputs found

    Open Set Classification for Deep Learning in Large-Scale and Continual Learning Models

    Get PDF
    Supervised classification methods often assume the train and test data distributions are the same and that all classes in the test set are present in the training set. However, deployed classifiers require the ability to recognize inputs from outside the training set as unknowns and update representations in near real-time to account for novel concepts unknown during offline training. This problem has been studied under multiple paradigms including out-of-distribution detection and open set recognition; however, for convolutional neural networks, there have been two major approaches: 1) inference methods to separate known inputs from unknown inputs and 2) feature space regularization strategies to improve model robustness to novel inputs. In this dissertation, we explore the relationship between the two approaches and directly compare performance on large-scale datasets that have more than a few dozen categories. Using the ImageNet large-scale classification dataset, we identify novel combinations of regularization and specialized inference methods that perform best across multiple open set classification problems of increasing difficulty level. We find that input perturbation and temperature scaling yield significantly better performance on large-scale datasets than other inference methods tested, regardless of the feature space regularization strategy. Conversely, we also find that improving performance with advanced regularization schemes during training yields better performance when baseline inference techniques are used; however, this often requires supplementing the training data with additional background samples which is difficult in large-scale problems. To overcome this problem we further propose a simple regularization technique that can be easily applied to existing convolutional neural network architectures that improves open set robustness without the requirement for a background dataset. Our novel method achieves state-of-the-art results on open set classification baselines and easily scales to large-scale problems. Finally, we explore the intersection of open set and continual learning to establish baselines for the first time for novelty detection while learning from online data streams. To accomplish this we establish a novel dataset created for evaluating image open set classification capabilities of streaming learning algorithms. Finally, using our new baselines we draw conclusions as to what the most computationally efficient means of detecting novelty in pre-trained models and what properties of an efficient open set learning algorithm operating in the streaming paradigm should possess

    The Nature of Novelty Detection

    Full text link
    Sentence level novelty detection aims at reducing redundant sentences from a sentence list. In the task, sentences appearing later in the list with no new meanings are eliminated. Aiming at a better accuracy for detecting redundancy, this paper reveals the nature of the novelty detection task currently overlooked by the Novelty community −- Novelty as a combination of the partial overlap (PO, two sentences sharing common facts) and complete overlap (CO, the first sentence covers all the facts of the second sentence) relations. By formalizing novelty detection as a combination of the two relations between sentences, new viewpoints toward techniques dealing with Novelty are proposed. Among the methods discussed, the similarity, overlap, pool and language modeling approaches are commonly used. Furthermore, a novel approach, selected pool method is provided, which is immediate following the nature of the task. Experimental results obtained on all the three currently available novelty datasets showed that selected pool is significantly better or no worse than the current methods. Knowledge about the nature of the task also affects the evaluation methodologies. We propose new evaluation measures for Novelty according to the nature of the task, as well as possible directions for future study.Comment: This paper pointed out the future direction for novelty detection research. 37 pages, double spaced versio

    BINet: Multi-perspective Business Process Anomaly Classification

    Full text link
    In this paper, we introduce BINet, a neural network architecture for real-time multi-perspective anomaly detection in business process event logs. BINet is designed to handle both the control flow and the data perspective of a business process. Additionally, we propose a set of heuristics for setting the threshold of an anomaly detection algorithm automatically. We demonstrate that BINet can be used to detect anomalies in event logs not only on a case level but also on event attribute level. Finally, we demonstrate that a simple set of rules can be used to utilize the output of BINet for anomaly classification. We compare BINet to eight other state-of-the-art anomaly detection algorithms and evaluate their performance on an elaborate data corpus of 29 synthetic and 15 real-life event logs. BINet outperforms all other methods both on the synthetic as well as on the real-life datasets

    Autoencoders and Generative Adversarial Networks for Imbalanced Sequence Classification

    Full text link
    Generative Adversarial Networks (GANs) have been used in many different applications to generate realistic synthetic data. We introduce a novel GAN with Autoencoder (GAN-AE) architecture to generate synthetic samples for variable length, multi-feature sequence datasets. In this model, we develop a GAN architecture with an additional autoencoder component, where recurrent neural networks (RNNs) are used for each component of the model in order to generate synthetic data to improve classification accuracy for a highly imbalanced medical device dataset. In addition to the medical device dataset, we also evaluate the GAN-AE performance on two additional datasets and demonstrate the application of GAN-AE to a sequence-to-sequence task where both synthetic sequence inputs and sequence outputs must be generated. To evaluate the quality of the synthetic data, we train encoder-decoder models both with and without the synthetic data and compare the classification model performance. We show that a model trained with GAN-AE generated synthetic data outperforms models trained with synthetic data generated both with standard oversampling techniques such as SMOTE and Autoencoders as well as with state of the art GAN-based models

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    How to Evaluate the Quality of Unsupervised Anomaly Detection Algorithms?

    Full text link
    When sufficient labeled data are available, classical criteria based on Receiver Operating Characteristic (ROC) or Precision-Recall (PR) curves can be used to compare the performance of un-supervised anomaly detection algorithms. However , in many situations, few or no data are labeled. This calls for alternative criteria one can compute on non-labeled data. In this paper, two criteria that do not require labels are empirically shown to discriminate accurately (w.r.t. ROC or PR based criteria) between algorithms. These criteria are based on existing Excess-Mass (EM) and Mass-Volume (MV) curves, which generally cannot be well estimated in large dimension. A methodology based on feature sub-sampling and aggregating is also described and tested, extending the use of these criteria to high-dimensional datasets and solving major drawbacks inherent to standard EM and MV curves
    • …
    corecore