236 research outputs found

    VLSI architecture design approaches for real-time video processing

    Get PDF
    This paper discusses the programmable and dedicated approaches for real-time video processing applications. Various VLSI architecture including the design examples of both approaches are reviewed. Finally, discussions of several practical designs in real-time video processing applications are then considered in VLSI architectures to provide significant guidelines to VLSI designers for any further real-time video processing design works

    Exploring Processor and Memory Architectures for Multimedia

    Get PDF
    Multimedia has become one of the cornerstones of our 21st century society and, when combined with mobility, has enabled a tremendous evolution of our society. However, joining these two concepts introduces many technical challenges. These range from having sufficient performance for handling multimedia content to having the battery stamina for acceptable mobile usage. When taking a projection of where we are heading, we see these issues becoming ever more challenging by increased mobility as well as advancements in multimedia content, such as introduction of stereoscopic 3D and augmented reality. The increased performance needs for handling multimedia come not only from an ongoing step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 AVC) that adds to the computational load increase. To meet these performance challenges there has been processing and memory architecture advances (SIMD, out-of-order superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in requirements for mobility, placing higher demands on battery-powered systems despite the steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-terms of battery capacity versus performance advances. In order to make optimal use of these architectural advances and to meet the power limitations in mobile systems, there is a need for taking an overall approach on how to best utilize these systems. The right trade-off between performance and power is crucial. On top of these constraints, the flexibility aspects of the system need to be addressed. All this makes it very important to reach the right architectural balance in the system. The first goal for this thesis is to examine multimedia applications and propose a flexible solution that can meet the architectural requirements in a mobile system. Secondly, propose an automated methodology of optimally mapping multimedia data and instructions to a heterogeneous multilevel memory subsystem. The proposed methodology uses constraint programming for solving a multidimensional optimization problem. Results from this work indicate that using today’s most advanced mobile processor technology together with a multi-level heterogeneous on-chip memory subsystem can meet the performance requirements for handling multimedia. By utilizing the automated optimal memory mapping method presented in this thesis lower total power consumption can be achieved, whilst performance for multimedia applications is improved, by employing enhanced memory management. This is achieved through reduced external accesses and better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for predicting multimedia memory accesses for a given architecture

    SIMD based multicore processor for image and video processing

    Get PDF
    制度:新 ; 報告番号:甲3602号 ; 学位の種類:博士(工学) ; 授与年月日:2012/3/15 ; 早大学位記番号:新595

    Low power architectures for streaming applications

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationThe embedded system space is characterized by a rapid evolution in the complexity and functionality of applications. In addition, the short time-to-market nature of the business motivates the use of programmable devices capable of meeting the conflicting constraints of low-energy, high-performance, and short design times. The keys to achieving these conflicting constraints are specialization and maximally extracting available application parallelism. General purpose processors are flexible but are either too power hungry or lack the necessary performance. Application-specific integrated circuits (ASICS) efficiently meet the performance and power needs but are inflexible. Programmable domain-specific architectures (DSAs) are an attractive middle ground, but their design requires significant time, resources, and expertise in a variety of specialties, which range from application algorithms to architecture and ultimately, circuit design. This dissertation presents CoGenE, a design framework that automates the design of energy-performance-optimal DSAs for embedded systems. For a given application domain and a user-chosen initial architectural specification, CoGenE consists of a a Compiler to generate execution binary, a simulator Generator to collect performance/energy statistics, and an Explorer that modifies the current architecture to improve energy-performance-area characteristics. The above process repeats automatically until the user-specified constraints are achieved. This removes or alleviates the time needed to understand the application, manually design the DSA, and generate object code for the DSA. Thus, CoGenE is a new design methodology that represents a significant improvement in performance, energy dissipation, design time, and resources. This dissertation employs the face recognition domain to showcase a flexible architectural design methodology that creates "ASIC-like" DSAs. The DSAs are instruction set architecture (ISA)-independent and achieve good energy-performance characteristics by coscheduling the often conflicting constraints of data access, data movement, and computation through a flexible interconnect. This represents a significant increase in programming complexity and code generation time. To address this problem, the CoGenE compiler employs integer linear programming (ILP)-based 'interconnect-aware' scheduling techniques for automatic code generation. The CoGenE explorer employs an iterative technique to search the complete design space and select a set of energy-performance-optimal candidates. When compared to manual designs, results demonstrate that CoGenE produces superior designs for three application domains: face recognition, speech recognition and wireless telephony. While CoGenE is well suited to applications that exhibit a streaming behavior, multithreaded applications like ray tracing present a different but important challenge. To demonstrate its generality, CoGenE is evaluated in designing a novel multicore N-wide SIMD architecture, known as StreamRay, for the ray tracing domain. CoGenE is used to synthesize the SIMD execution cores, the compiler that generates the application binary, and the interconnection subsystem. Further, separating address and data computations in space reduces data movement and contention for resources, thereby significantly improving performance compared to existing ray tracing approaches

    KAVUAKA: a low-power application-specific processor architecture for digital hearing aids

    Get PDF
    The power consumption of digital hearing aids is very restricted due to their small physical size and the available hardware resources for signal processing are limited. However, there is a demand for more processing performance to make future hearing aids more useful and smarter. Future hearing aids should be able to detect, localize, and recognize target speakers in complex acoustic environments to further improve the speech intelligibility of the individual hearing aid user. Computationally intensive algorithms are required for this task. To maintain acceptable battery life, the hearing aid processing architecture must be highly optimized for extremely low-power consumption and high processing performance.The integration of application-specific instruction-set processors (ASIPs) into hearing aids enables a wide range of architectural customizations to meet the stringent power consumption and performance requirements. In this thesis, the application-specific hearing aid processor KAVUAKA is presented, which is customized and optimized with state-of-the-art hearing aid algorithms such as speaker localization, noise reduction, beamforming algorithms, and speech recognition. Specialized and application-specific instructions are designed and added to the baseline instruction set architecture (ISA). Among the major contributions are a multiply-accumulate (MAC) unit for real- and complex-valued numbers, architectures for power reduction during register accesses, co-processors and a low-latency audio interface. With the proposed MAC architecture, the KAVUAKA processor requires 16 % less cycles for the computation of a 128-point fast Fourier transform (FFT) compared to related programmable digital signal processors. The power consumption during register file accesses is decreased by 6 %to 17 % with isolation and by-pass techniques. The hardware-induced audio latency is 34 %lower compared to related audio interfaces for frame size of 64 samples.The final hearing aid system-on-chip (SoC) with four KAVUAKA processor cores and ten co-processors is integrated as an application-specific integrated circuit (ASIC) using a 40 nm low-power technology. The die size is 3.6 mm2. Each of the processors and co-processors contains individual customizations and hardware features with a varying datapath width between 24-bit to 64-bit. The core area of the 64-bit processor configuration is 0.134 mm2. The processors are organized in two clusters that share memory, an audio interface, co-processors and serial interfaces. The average power consumption at a clock speed of 10 MHz is 2.4 mW for SoC and 0.6 mW for the 64-bit processor.Case studies with four reference hearing aid algorithms are used to present and evaluate the proposed hardware architectures and optimizations. The program code for each processor and co-processor is generated and optimized with evolutionary algorithms for operation merging,instruction scheduling and register allocation. The KAVUAKA processor architecture is com-pared to related processor architectures in terms of processing performance, average power consumption, and silicon area requirements

    Ultra-Low Energy Domain-Specific Instruction-Set Processors

    Full text link
    corecore