4,774 research outputs found

    An Elitist Non-Dominated Multi-Objective Genetic Algorithm Based Temperature Aware Circuit Synthesis

    Get PDF
    At sub-nanometre technology, temperature is one of the important design parameters to be taken care of during the target implementation for the circuit for its long term and reliable operation. High device package density leads to high power density that generates high temperatures. The temperature of a chip is directly proportional to the power density of the chip. So, the power density of a chip can be minimized to reduce the possibility of the high temperature generation. Temperature minimization approaches are generally addressed at the physical design level but it incurs high cooling cost. To reduce the cooling cost, the temperature minimization approaches can be addressed at the logic level. In this work, the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) based multi-objective heuristic approach is proposed to select the efficient input variable polarity of Mixed Polarity Reed-Muller (MPRM) expansion for simultaneous optimization of area, power, and temperature. A Pareto optimal solution set is obtained from the vast solution set of 3n (‘n’ is the number of input variables) different polarities of MPRM. Tabular technique is used for input polarity conversion from Sum-of-Product (SOP) form to MPRM form. Finally, using CADENCE and HotSpot tool absolute temperature, silicon area and power consumption of the synthesized circuits are calculated and are reported. The proposed algorithm saves around 76.20% silicon area, 29.09% power dissipation and reduces 17.06% peak temperature in comparison with the reported values in the literature

    Verification Method for Area Optimization of Mixed - Polarity Reed - Muller Logic Circuits

    Get PDF
    Area minimization of mixed-polarity Reed-Muller (MPRM) logic circuits is an important step in logic synthesis. While previous studies are mainly based on various artificial intelligence algorithms and not comparable with the results from the mainstream electronics design automation (EDA) tool. Furthermore, it is hard to verify the superiority of intelligence algorithms to the EDA tool on area optimization. To address these problems, a multi-step novel verification method was proposed. First, a hybrid simulated annealing (SA) and discrete particle swarm optimization (DPSO) approach (SADPSO) was applied to optimize the area of the MPRM logic circuit. Second, a Design Compiler (DC) algorithm was used to optimize the area of the same MPRM logic circuit under certain settings and constraints. Finally, the area optimization results of the two algorithms were compared based on MCNC benchmark circuits. Results demonstrate that the SADPSO algorithm outperforms the DC algorithm in the area optimization for MPRM logic circuits. The SADPSO algorithm saves approximately 9.1% equivalent logic gates compared with the DC algorithm. Our proposed verification method illustrates the efficacy of the intelligence algorithm in area optimization compared with DC algorithm. Conclusions in this study provide guidance for the improvement of EDA tools in relation to the area optimization of combinational logic circuits

    Heuristic Synthesis of Reversible Logic – A Comparative Study

    Get PDF
    Reversible logic circuits have been historically motivated by theoretical research in low-power, and recently attracted interest as components of the quantum algorithm, optical computing and nanotechnology. However due to the intrinsic property of reversible logic, traditional irreversible logic design and synthesis methods cannot be carried out. Thus a new set of algorithms are developed correctly to synthesize reversible logic circuit. This paper presents a comprehensive literature review with comparative study on heuristic based reversible logic synthesis. It reviews a range of heuristic based reversible logic synthesis techniques reported by researchers (BDD-based, cycle-based, search-based, non-search-based, rule-based, transformation-based, and ESOP-based). All techniques are described in detail and summarized in a table based on their features, limitation, library used and their consideration metric. Benchmark comparison of gate count and quantum cost are analysed for each synthesis technique. Comparing the synthesis algorithm outputs over the years, it can be observed that different approach has been used for the synthesis of reversible circuit. However, the improvements are not significant. Quantum cost and gate count has improved over the years, but arguments and debates are still on certain issues such as the issue of garbage outputs that remain the same. This paper provides the information of all heuristic based synthesis of reversible logic method proposed over the years. All techniques are explained in detail and thus informative for new reversible logic researchers and bridging the knowledge gap in this area

    Computer aided synthesis and optimisation of electronic logic circuits

    Get PDF
    In this thesis, a variety of algorithms for synthesis and optimisation of combinational and sequential logic circuits are developed. These algorithms could be part of new commercial EGAD package for future VLSI digital designs. The results show that considerable saving in components can be achieved resulting in simpler designs that are smaller, cheaper, consume less power and easier to test. The purpose of generating different sets of coefficients related to Reed Muller (RM) is that they contain different number of terms; therefore the minimum one can be selected to design the circuits with reduced gate count. To widen the search space and achieve better synthesis tools, representations of Mixed Polarity Reed Muller (MPRM), Mixed Polarity Dual Reed Muller (MPDRM), and Pseduo Kronecker Reed Muller (PKRO RM) expansions are investigated. Efficient and fast combinatorial techniques and algorithms are developed for the following: â Bidirectional conversion between MPRM/ MPDRM form and Fixed Polarity Reed Muller forms (FPRM)/Fixed Polarity Dual Reed Muller forms (FPDRM) form respectively. The main advantages for these techniques are their simplicity and suitability for single and multi output Boolean functions. â Computing the coefficients of any polarity related to PKRO_RM class starting from FPRM coefficients or Canonical Sum of Products (CSOP). â Computing the coefficients of any polarity related to MPRM/or MPDRM directly from standard form of CSOP/Canonical Product of sums (CPOS) Boolean functions, respectively. The proposed algorithms are efficient in terms of CPU time and can be used for large functions. For optimisation of combinational circuits, new techniques and algorithms based on algebraic techniques are developed which can be used to generate reduced RM expressions to design circuits in RM/DRM domain starting from FPRM/FPDRM, respectively. The outcome for these techniques is expansion in Reed Muller domain with minimal terms. The search space is 3`" Exclusive OR Sum of Product (ESOP)/or Exclusive NOR Product of Sums (ENPOS) expansions. Genetic Algorithms (GAs) are also developed to optimise combinational circuits to find optimal MPRM/MPDRM among 3° different polarities without the need to do exhaustive search. These algorithms are developed for completely and incompletely specified Boolean functions. The experimental results show that GA can find optimum solutions in a short time compared with long time required running exhaustive search in all the benchmarks tested. Multi Objective Genetic Algorithm (MOGA) is developed and implemented to determine the optimal state assignment which results in less area and power dissipation for completely and incompletely specified sequential circuits. The goal is to find the best assignments which reduce the component count and switching activity simultaneously. The experimental results show that saving in components and switching activity are achieved in most of the benchmarks tested compared with recently published research. All algorithms are implemented in C++.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Heuristic synthesis of reversible logic - a comparative study

    Get PDF
    Reversible logic circuits have been historically motivated by theoretical research in low-power, and recently attracted interest as components of the quantum algorithm, optical computing and nanotechnology. However due to the intrinsic property of reversible logic, traditional irreversible logic design and synthesis methods cannot be carried out. Thus a new set of algorithms are developed correctly to synthesize reversible logic circuit. This paper presents a comprehensive literature review with comparative study on heuristic based reversible logic synthesis. It reviews a range of heuristic based reversible logic synthesis techniques reported by researchers (BDD-based, cycle-based, search-based, non-search-based, rule-based, transformation-based, and ESOP-based). All techniques are described in detail and summarized in a table based on their features, limitation, library used and their consideration metric. Benchmark comparison of gate count and quantum cost are analysed for each synthesis technique. Comparing the synthesis algorithm outputs over the years, it can be observed that different approach has been used for the synthesis of reversible circuit. However, the improvements are not significant. Quantum cost and gate count has improved over the years, but arguments and debates are still on certain issues such as the issue of garbage outputs that remain the same. This paper provides the information of all heuristic based synthesis of reversible logic method proposed over the years. All techniques are explained in detail and thus informative for new reversible logic researchers and bridging the knowledge gap in this area

    Combinational logic synthesis based on the dual form of Reed-Muller representation

    Get PDF
    In certain applications, AND/XOR (Reed-Muller), and ORlXNOR (Dual form of Reed-Muller) logic have shown some attractive advantages over the standard Sum of Products (SOP) and Product of Sums (POS). Bidirectional conversion algorithms between SOP and AND/XOR also between POS and ORlXNOR based on Sparse and partitioning techniques are presented for multiple output Boolean functions. The developed programs are tested for some benchmarks with up to 20 inputs and 40 outputs. A new direct method is presented to calculate the coefficients of the Fixed Polarity Dual Reed-Muller (FPDRM) from the truth vector of the POS. Any Boolean function can be expressed by FPDRM forms. There are 211 polarities for an n-variable function and the number of sum terms depends on these polarities. Finding the best polarity is costly interims of CPU time, in order to search for the best polarity which will lead to the minimum number of sums for a particular function. Therefore, an algorithm is developed to compute all the coefficients of the Fixed Polarity Dual Reed-Muller (FPDRM) with polarity p from any polarity q. This technique is used to find the best polarity of FPDRM among the 211 fixed polarities. The algorithm is based on the Dual- polarity property and the Gray code strategy. Therefore, there is no need to start from POS form to find FPDRM coefficients for all the polarities. The proposed methods are efficient in terms of memory size and CPU time. A fast algorithm is developed and implemented in C language which can convert between POSs and FPDRMs. The program was tested for up to 23 variables. A modified version of the same program was used to find the best polarity. For up to 13 variables the CPU time was less than 42 seconds. To search for the optimal polarity for large number of variables and to reduce the se arch time 0 ffinding the 0 ptimal polarity 0 fthe function, two new algorithms are developed and presented in this thesis. The first one is used to convert between P OS and Positive Polarity Dual Reed-Muller (PPDRM) forms. The second algorithm will find the optimal fixed polarity for the FPDRM among the 211 different polarities for large n-variable functions. The most popular minimization criterion of the FPDRM form is obtained by the exhaustive search of the entire polarity vector. A non-exhaustive method for FPDRM expansions is presented. The new algorithms are based on separation of the truth vector (T) of POSs around each variable Xi into two groups. Instead of generating all of the polarity sets and searching for the best polarity, this algorithm will find the optimal polarity using the separation and sparse techniques, which will lead to optimal polarity. Time efficiency and computing speed are thus achieved in this technique. The algorithms don't require a large size of memory and don't require a long CPU time. The two algorithms are implemented in C language and tested for some benchmark. The proposed methods are fast and efficient as shown in the experimental results and can be used for large number of variables.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Design and synthesis of reversible logic

    Get PDF
    Energy lost during computation is an important issue for digital design. Today, all electronics devices suffer from energy lost due to the conventional logic system used. The amount of energy loss in the form of heat leads to immense challenges in nowadays circuit design. To overcome that, reversible logic has been invented. Since properties of reversible logic differ greatly than conventional logic, synthesis methods used for conventional logic cannot be used in reversible logic. In this dissertation, we proposed new synthesis algorithms and several circuit designs using reversible logic

    Mixed radix design flow for security applications

    Get PDF
    The purpose of secure devices, such as smartcards, is to protect sensitive information against software and hardware attacks. Implementation of the appropriate protection techniques often implies non-standard methods that are not supported by the conventional design tools. In the recent decade the designers of secure devices have been working hard on customising the workflow. The presented research aims at collecting the up-to-date experiences in this area and create a generic approach to the secure design flow that can be used as guidance by engineers. Well-known countermeasures to hardware attacks imply the use of specific signal encodings. Therefore, multi-valued logic has been considered as a primary aspect of the secure design. The choice of radix is crucial for multi-valued logic synthesis. Practical examples reveal that it is not always possible to find the optimal radix when taking into account actual physical parameters of multi-valued operations. In other words, each radix has its advantages and disadvantages. Our proposal is to synthesise logic in different radices, so it could benefit from their combination. With respect to the design opportunities of the existing tools and the possibilities of developing new tools that would fill the gaps in the flow, two distinct design approaches have been formed: conversion driven design and pre-synthesis. The conversion driven design approach takes the outputs of mature and time-proven electronic design automation (EDA) synthesis tools to generate mixed radix datapath circuits in an endeavour to investigate the added relative advantages or disadvantages. An algorithm underpinning the approach is presented and formally described together with secure gate-level implementations. The obtained results are reported showing an increase in power consumption, thus giving further motivation for the second approach. The pre-synthesis approach is aimed at improving the efficiency by using multivalued logic synthesis techniques to produce an abstract component-level circuit before mapping it into technology libary. Reed-Muller expansions over Galois field arithmetic have been chosen as a theoretical foundation for this approach. In order to enable the combination of radices at the mathematical level, the multi-valued Reed-Muller expansions have been developed into mixed radix Reed-Muller expansions. The goals of the work is to estimate the potential of the new approach and to analyse its impact on circuit parameters down to the level of physical gates. The benchmark results show the approach extends the search space for optimisation and provides information on how the implemented functions are related to different radices. The theory of two-level radix models and corresponding computation methods are the primary theoretical contribution. It has been implemented in RMMixed tool and interfaced to the standard EDA tools to form a complete security-aware design flow.EThOS - Electronic Theses Online ServiceEPSRCGBUnited Kingdo

    Logic synthesis and optimisation using Reed-Muller expansions

    Get PDF
    This thesis presents techniques and algorithms which may be employed to represent, generate and optimise particular categories of Exclusive-OR SumOf-Products (ESOP) forms. The work documented herein concentrates on two types of Reed-Muller (RM) expressions, namely, Fixed Polarity Reed-Muller (FPRM) expansions and KROnecker (KRO) expansions (a category of mixed polarity RM expansions). Initially, the theory of switching functions is comprehensively reviewed. This includes descriptions of various types of RM expansion and ESOP forms. The structure of Binary Decision Diagrams (BDDs) and Reed-Muller Universal Logic Module (RM-ULM) networks are also examined. Heuristic algorithms for deriving optimal (sub-optimal) FPRM expansions of Boolean functions are described. These algorithms are improved forms of an existing tabular technique [1]. Results are presented which illustrate the performance of these new minimisation methods when evaluated against selected existing techniques. An algorithm which may be employed to generate FPRM expansions from incompletely specified Boolean functions is also described. This technique introduces a means of determining the optimum allocation of the Boolean 'don't care' terms so as to derive equivalent minimal FPRM expansions. The tabular technique [1] is extended to allow the representation of KRO expansions. This new method may be employed to generate KRO expansions from either an initial incompletely specified Boolean function or a KRO expansion of different polarity. Additionally, it may be necessary to derive KRO expressions from Boolean Sum-Of-Products (SOP) forms where the product terms are not minterms. A technique is described which forms KRO expansions from disjoint SOP forms without first expanding the SOP expressions to minterm forms. Reed-Muller Binary Decision Diagrams (RMBDDs) are introduced as a graphical means of representing FPRM expansions. RMBDDs are analogous to the BDDs used to represent Boolean functions. Rules are detailed which allow the efficient representation of the initial FPRM expansions and an algorithm is presented which may be employed to determine an optimum (sub-optimum) variable ordering for the RMBDDs. The implementation of RMBDDs as RM-ULM networks is also examined. This thesis is concluded with a review of the algorithms and techniques developed during this research project. The value of these methods are discussed and suggestions are made as to how improved results could have been obtained. Additionally, areas for future work are proposed
    • …
    corecore