1,336 research outputs found

    Development of Corn Kernel-based Biocomposite Films for Food Packaging Applications

    Get PDF
    Most of the current and active food packaging resources and methods are nonbiodegradable and nonrenewable therefore harmful to the environment. Due to this, alternate sources of food packaging materials are in high demand. In this study, a bio-composite film has been developed, with Corn kernel powder as fiber reinforcement which is mixed with gelatin, and lignin two biopolymers as the matrix. The effect of Corn Kernel (CK) reinforcement on the Gelatin/Lignin (G/L) matrix on mechanical and barrier properties has been studied. CK has shown great potential as reinforcement to natural polymer, gelatin, and lignin (G/L) for food packaging applications as well as equating its unique attributes to biodegradability. Gelatin has significant limitations on barrier properties, hence choosing to crosslink polymer Lignin to minimize limitations. The higher particle size of CK affected the composite, hence it was further ground to a smaller size (Image analysis via. Digital Microscope). Four different mixtures at CK w% were used to prepare the composite film, CK (10%) – G/L (5%, 10%, 15%, 20%). Two G/L (5%, 10%) films without fiber were also produced to study performance comparison. The prepared composite films were subjected to morphological analysis, mechanical strength analysis, film thickness analysis, water vapor permeability analysis, and water uptake analysis. It has been observed that CK is well dispersed in the G/L matrix (Image analysis via. SEM). Mechanical properties of the CK composite film evaluated that with an increase of w% of CK the strength of the composite increases. A film with more matrix showed less absorption of water as well as less water vapor permeability. The WVP test and WU test revealed that film CK (10%) – G/L (20%) possesses the best barrier properties

    Nanofluids with optimised thermal properties based on metal chalcogenides with different morphology

    Get PDF
    Over the last decades, the interest around renewable energies has increased considerably because of the growing energy demand and the environmental problems derived from fossil fuels combustion. In this scenario, concentrating solar power (CSP) is a renewable energy with a high potential to cover the global energy demand. However, improving the efficiency and reducing the cost of technologies based on this type of energy to make it more competitive is still a work in progress. One of the current lines of research is the replacement of the heat transfer fluid used in the absorber tube of parabolic trough collectors with nano-colloidal suspensions of nanomaterials in a base fluid, typically named nanofluids. Nanofluids are considered as a new generation of heat transfer fluids since they exhibit thermophysical properties improvements compared with conventional heat transfer fluids. But there are still some barriers to overcome for the implementation of nanofluids. For example, obtaining nanofluids with high stability is a priority challenge for this kind of system. Also ensuring that nanoparticles will not clog pipes or cause pressure drops. In this Doctoral Thesis, the use of transition metal dichalcogenide-based nanofluids as a heat transfer fluid in solar power plants has been investigated for the first time. Specifically, nanofluids based on one-dimensional, two-dimensional and three-dimensional MoS2 , WS2 and WSe2 nanostructures have been researched. The base fluid used in the preparation of these nanofluids is the eutectic mixture of biphenyl and diphenyl oxide typically employed as heat transfer fluid in concentrating solar power plants. Mainly two preparation methods have been explored: the liquid phase exfoliation method, and the solvothermal synthesis of the nanomaterial and its subsequent dispersion in the thermal oil by ultrasound. Experimental parameters such as surfactant concentration, time and sonication frequency for preparation of nanofluids have also been analysed. The nanofluids have been subjected to an extensive characterisation which includes the study of colloidal stability over time, characterisation of thermal properties such as isobaric specific heat or thermal conductivity, rheological properties and optical properties. The results have revealed that nanofluids based on 1D and 2D nanostructures of transition metal dichalcogenides are colloidally stable over time and exhibit improved thermal properties compared to the typical thermal fluid used in solar power plants. The most promising nanofluids are those based on MoS 2 nanosheets and those based on WSe 2 nanosheets with heat transfer coefficient improvements of 36.2% and 34.1% respectively with respect to thermal oil. Furthermore, the dramatic role of WSe2 nanosheets in enhancing optical extinction of the thermal oil suggests the use of these nanofluids in direct absorption solar collectors. In conclusion, the present work demonstrates the feasibility of using nanofluids based on transition metal dichalcogenide nanostructures as heat transfer fluids in concentrating solar power plants based on parabolic trough collectors.En las últimas décadas, el interés en torno a las energías renovables ha aumentado considerablemente debido a la creciente demanda energética y a los problemas medioambientales derivados de la combustión de combustibles fósiles. En este escenario, la energía solar de concentración (CSP) es una energía renovable con un alto potencial para cubrir la demanda energética mundial. Sin embargo, es necesario trabajar para mejorar la eficiencia y reducir el coste de las tecnologías basadas en este tipo de energía con el objetivo de hacerla más competitiva. Una de las líneas de investigación actuales es la sustitución del fluido caloportador utilizado en el tubo absorbedor de los colectores cilindroparabólicos por suspensiones nanocoloidales de nanomateriales en un fluido base, típicamente denominados nanofluidos. Los nanofluidos se consideran una nueva generación de fluidos de transferencia de calor, ya que presentan mejoras en sus propiedades termofísicas en comparación con los fluidos de transferencia de calor convencionales. Pero aún quedan algunos obstáculos por superar para la aplicación de los nanofluidos. Por ejemplo, obtener nanofluidos con alta estabilidad es un reto prioritario en este tipo de sistemas. También garantizar que las nanopartículas no obstruyan las tuberías ni provoquen caídas de presión. En esta Tesis Doctoral se ha investigado por primera vez el uso de nanofluidos basados en dicalcogenuros de metales de transición como fluido caloportador en centrales solares. En concreto, se han investigado nanofluidos basados en nanoestructuras unidimensionales, bidimensionales y tridimensionales de MoS2, WS2 y WSe2. El fluido base utilizado en la preparación de estos nanofluidos es la mezcla eutéctica de bifenilo y óxido de difenilo empleada habitualmente como fluido de transferencia de calor en las centrales de concentración de energía solar. Se han explorado principalmente dos métodos de preparación: el método de exfoliación en fase líquida y la síntesis solvotermal del nanomaterial y su posterior dispersión en el aceite térmico mediante ultrasonidos. También se han analizado parámetros experimentales como la concentración de surfactante, el tiempo y la frecuencia de sonicación para la preparación de los nanofluidos. Los nanofluidos han sido sometidos a una extensa caracterización que incluye el estudio de la estabilidad coloidal a lo largo del tiempo, la caracterización de propiedades térmicas como el calor específico isobárico o la conductividad térmica, propiedades reológicas y propiedades ópticas. Los resultados han revelado que los nanofluidos basados en nanoestructuras 1D y 2D de dicalcogenuros de metales de transición son coloidalmente estables en el tiempo y presentan propiedades térmicas mejoradas en comparación con el fluido térmico típico utilizado en las centrales solares. Los nanofluidos más prometedores son los basados en nanoláminas de MoS2 y los basados en nanoláminas de WSe2, con mejoras del coeficiente de transferencia térmica del 36,2% y el 34,1%, respectivamente, con respecto al aceite térmico. Además, el espectacular papel de las nanoláminas de WSe2 en la mejora de la extinción óptica del aceite térmico sugiere el uso de estos nanofluidos en colectores solares de absorción directa. En conclusión, el presente trabajo demuestra la viabilidad del uso de nanofluidos basados en nanoestructuras de dicalcogenuros de metales de transición como fluidos de transferencia de calor en centrales solares de concentración basadas en colectores cilindro-parabólicos

    Towards light-driven catalysis in block copolymer micelles

    Get PDF
    Im Rahmen dieser Arbeit wurden die Synthese, Charakterisierung und Untersuchungen polymerbasierter, sogenannter „weicher“ Materie als Matrizen für lichtgetriebene Redoxreaktionen behandelt. Der erste Teil dieser Arbeit umfasste die Präparation von pH-responsiven Mizellen in Wasser auf Grundlage von maßgeschneiderten, amphiphilen Blockcopolymeren, wobei unter anderem die im hydrophilen Teil vorhandenen Liganden zur Anbindung von Übergangsmetallkomplexen genutzt wurden. Auf diese Weise konnten (photo)katalytisch aktive Zentren innerhalb der pH-sensitiven Corona der Mizellen integriert werden. Mit diesem Ansatz war es möglich, mittels Konformationsänderungen der Corona der Mizellen deren Aktivität in verschiedenen, photokatalytischen Systemen experimentell zu kontrollieren und mit theoretischen Modellen zu analysieren. Der zweite Teil dieser Abhandlung widmete sich der Verwendung eines alternativen, polaren und funktionalisierbaren Monomer zum Aufbau analoger Blockcopolymerarchitekturen in methanolischen Lösungen sowie einer Anwendung in photokatalytischen Prozessen. Es ließen sich auf der chemischen Struktur basierende Indizien einer weit über die bloße mechanische Integration hinausreichende Funktion der Matrix feststellen. Dies wurde auch durch eine gesamtheitliche Betrachtung beider Systeme herausgearbeitet. Der dritte Teil dieser Arbeit fokussierte sich auf photokatalytische Modellsysteme, um Fallstudien zur Reproduzierbarkeit in einem modularen Photoreaktor durchzuführen. Ein weiteres Modellsystem wurde für eine didaktische Anwendung zugänglich gemacht. Mit dieser Arbeit war es möglich einen substanziellen Beitrag zur weichen Materie-vermittelten lichtgetriebenen Katalyse zu leisten. Dies geschah sowohl durch die Präsentation von Konzepten zur Integration derartiger Systeme in weicher Materie als auch der resultierenden Möglichkeit stoffliche und energetische Mechanismen in solchen Matrizen nachzuvollziehen

    Multiscale Modeling and Gaussian Process Regression for Applications in Composite Materials

    Get PDF
    An ongoing challenge in advanced materials design is the development of accurate multiscale models that consider uncertainty while establishing a link between knowledge or information about constituent materials to overall composite properties. Successful models can accurately predict composite properties, reducing the high financial and labor costs associated with experimental determination and accelerating material innovation. Whereas early pioneers in micromechanics developed simplistic theoretical models to map these relationships, modern advances in computer technology have enabled detailed simulators capable of accurately predicting complex and multiscale phenomena. This work advances domain knowledge via two means: firstly, through the development of high-fidelity, physics-based finite element (FE) models of composite microstructures that incorporate uncertainty in predictions, and secondly, through the development of a novel inverse analysis framework that enables the discovery of unknown or obscure constituent properties using literature data and Gaussian process (GP) surrogate models trained on FE model predictions. This work presents a generalizable approach to modeling a diverse array of composite subtypes, from a simple particulate system to a complex commercial composite. The inverse analysis framework was demonstrated for a thermoplastic composite reinforced by spherical fillers with unknown interphase properties. The framework leverages computer model simulations with easily obtainable macroscale elastic property measurements to infer interphase properties that are otherwise challenging to measure. The interphase modulus and thickness were determined for six different thermoplastic composites; four were reinforced by micron-scale particles and two with nano-scale particles. An alginate fiber embedded with a helically symmetric arrangement of cellulose nanocrystals (CNCs) was investigated using multiscale FE analysis to quantify microstructural uncertainty and the subsequent effect on macroscopic behavior. The macroscale uniaxial tensile simulation revealed that the microstructure induces internal stresses sufficient to rotate or twist the fiber about its axis. The reduction in axial elastic modulus for increases in CNC spiral angle was quantified in a sensitivity analysis using a GP surrogate modeling approach. A predictive model using GP regression was employed to investigate the link between input features and the mechanical properties of fiberglass-reinforced magnesium oxychloride (MOC) cement boards produced from a commercial process. The model evaluated the effect of formulation, crystalline phase compositions, and process control parameters on various mechanical performance metrics

    Fundamental Study of Photoluminescence-Shape Relationship of Fluorescent Nanodiamonds using Machine Learning Assisted Correlative Transmission Electron Microscopy and Photoluminescence Microscopy Method

    Full text link
    Luminescent nanoparticles have shown wide applications ranging from lighting, display, sensors, and biomedical diagnostics and imaging. Among these, fluorescent nanodiamonds (FNDs) containing nitrogen-vacancy (NV) color centers are posed as emerging materials particularly in biomedical and biological imaging applications due to their room-temperature emission, excellent photo- and chemical- stability, high bio-compatibility, and versatile functionalization potentials. The shape variation of nanoparticles has a decisive influence on their fluorescence. However, current relative studies are limited by the lack of reliable statistical analysis of nanoparticle shape and the difficulty of achieving a precise correlation between shape/structure and optical measurements of large numbers of individual nanoparticles. Therefore, new methods are urgently needed to overcome these challenges to assist in nanoparticle synthesis control and fluorescence performance optimization. In this thesis a new correlative TEM and photoluminescence (PL) microscopy (TEMPL) method has been developed that combines the measurements of the optical properties and the materials structure at the exact same particle and sample area, so that accurate correlation can be established to statistically study the FND morphology/structure and PL properties, at the single nanoparticle level. Moreover, machine learning based methods have been developed for categorizing the 2D and 3D shapes of a large number of nanoparticles generated in TEMPL method. This ML-assisted TEMPL method has been applied to understand the PL correlation with the size and shape of FNDs at the single particle level. In this thesis, a strong correlation between particle morphology and NV fluorescence in FND particles has been revealed: thin, flake-like particles produce enhanced fluorescence. The robustness of this trend is proven in FND with different surface oxidation treatments. This finding offers guidance for fluorescence-optimized sensing applications of FND, by controlling the shape of the particles in fabrication. Overall the TEMPL methodology developed in the thesis provides a versatile and general way to study the shape and fluorescence relationship of various nanoparticles and opens up the possibility of correlation methods between other characterisation techniques

    Development of electronics for microultrasound capsule endoscopy

    Get PDF
    Development of intracorporeal devices has surged in the last decade due to advancements in the semiconductor industry, energy storage and low-power sensing systems. This work aims to present a thorough systematic overview and exploration of the microultrasound (µUS) capsule endoscopy (CE) field as the development of electronic components will be key to a successful applicable µUSCE device. The research focused on investigating and designing high-voltage (HV, < 36 V) generating and driving circuits as well as a low-noise amplifier (LNA) for battery-powered and volume-limited systems. In implantable applications, HV generation with maximum efficiency is required to improve the operational lifetime whilst reducing the cost of the device. A fully integrated hybrid (H) charge pump (CP) comprising a serial-parallel (SP) stage was designed and manufactured for > 20 V and 0 - 100 µA output capabilities. The results were compared to a Dickson (DKCP) occupying the same chip area; further improvements in the SPCP topology were explored and a new switching scheme for SPCPs was introduced. A second regulated CP version was excogitated and manufactured to use with an integrated µUS pulse generator. The CP was manufactured and tested at different output currents and capacitive loads; its operation with an US pulser was evaluated and a novel self-oscillating CP mechanism to eliminate the need of an auxiliary clock generator with a minimum area overhead was devised. A single-output universal US pulser was designed, manufactured and tested with 1.5 MHz, 3 MHz, and 28 MHz arrays to achieve a means of fully-integrated, low-power transducer driving. The circuit was evaluated for power consumption and pulse generation capabilities with different loads. Pulse-echo measurements were carried out and compared with those from a commercial US research system to characterise and understand the quality of the generated pulse. A second pulser version for a 28 MHz array was derived to allow control of individual elements. The work involved its optimisation methodology and design of a novel HV feedback-based level-shifter. A low-noise amplifier (LNA) was designed for a wide bandwidth µUS array with a centre frequency of 28 MHz. The LNA was based on an energy-efficient inverter architecture. The circuit encompassed a full power-down functionality and was investigated for a self-biased operation to achieve lower chip area. The explored concepts enable realisation of low power and high performance LNAs for µUS frequencies

    Effects of Fibril Morphology and Interfacial Interactions on the Behavior of Polymer-Grafted Cellulose Nanofibril Reinforced Thermoplastic Composites

    Get PDF
    Mechanically refined cellulose nanofibrils (CNFs) promise to be a high-volume, sustainable, nanoscale reinforcement for thermoplastic composites. They are currently held back by poor interfacial interactions with composite matrices, energy intensive drying, and drying induced fibril aggregation. In this dissertation, we explored how a grafting-through polymerization scheme modified the surface of CNFs with a wide variety of commodity polymers and overcame many of these technical challenges. The first phase of the research was concerned with characterizing the unique morphology of these CNFs as a function of refinement energy. This characterization was employed to understand how the materials’ morphologies affected their interfacial interactions with porous substrates. In this work, optical, scanning electron, and atomic force microscopy were used to characterize the materials and mechanical testing was used to assess their interfacial interactions with porous model substrates. The second phase of the research explored how the grafting-through polymerization of commodity monomers occurred in the presence of methacrylated CNFs. Infrared spectroscopy measurements were used to explore the degree of grafting and microscopic analyses were employed to understand how these modifications affected the materials’ suspension morphology. The final phase of the research looked at the modifications’ effects on drying behavior, surface energetics, and reinforcement ability in poly(lactic acid) (PLA). Scanning electron microscopy and inverse gas chromatography provided insights into how the grafted-polymer modifications improved the fibrillar morphology of spray-dried CNFs and increased their interfacial adhesion to PLA. Tensile testing and rheological characterization of composites made from these spray dried materials revealed their improved dispersion and network formation in the PLA matrix. Scale up of bench scale reactions to the pilot scale are demonstrated and 3D printing trials were conducted. Dramatic improvements in mechanical properties were seen for 3D printed samples modified with poly(N-isopropyl acrylamide). These improvements in mechanical properties were explored by dynamic mechanical analysis and tensile testing, revealing the effects of fibril alignment during printing

    Radiation Tolerant Electronics, Volume II

    Get PDF
    Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade.After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects

    Charakterizace faktorů podílejících se na regulaci intracelulární dynamiky vybraných auxinových přenašečů

    Get PDF
    Souhrn U rostlin je známo že mají schopnost nasměrovat svoje části, jak prýt, tak kořeny, pro zabezpečení maximálního zisku energie a příjmu živin, ale taky pro možnost vyhnout se toxickým podmínkám pro svůj růst. Regulace směru růstu, který zabezpečuje přežití rostliny, závisí na schopnosti rostlinných orgánů růst asymetricky. Asymetrický růst je regulován na buněčné úrovni na základě exogenních i interních signálů. Již v roce 1880 Darwin popsal tropismy a směrový růst na makroskopické úrovni; v současnosti je nevyhnutelné pochopit molekulární mechanismy, které zajišťují efektivní regulaci směrového růstu rostlin. V rámci svého studia jsem se zaměřil na mechanismy regulace směru růstu u rostlin. Kořen je komplexní trojrozměrný objekt, který stále upravuje svůj tvar a směr růstu. Vzhledem k tomu, že kořen potřebuje zvětšovat svůj povrch, aby byl schopen zajistit přísun živin a vody, je důležité pochopit, jak je kořen schopen adaptaci na konstantně se měnící růstové podmínky způsobené prorůstáním dál do půdy zvládnout. Pokud kořen není schopen prorůstat půdou efektivně kvůli silnému mechanickému odporu nebo nedostatku živin, pak je ovlivněn i růst prýtu. Optimální růst kořene je komplexní proces, na kterém se podílí rozmanitá spleť signálních drah, které jsou ovlivněny rostlinnými hormony, cukry, flavonoidy...Plants are known to adjust the orientation of their organs, shoot and root, to ensure maximal energy generation and nutrient uptake, but also to avoid toxic growth conditions. Directional growth regulation depends on asymmetric plant organ growth and it is crucial to ensure plant survival. It is orchestrated on cellular level in concert with exogenous and intrinsic signals. Even though tropistic growth responses of plants were described by Darwin on macroscopic level already in 1880, now it is necessary to understand molecular mechanisms that underpin efficient modulation of directional plant growth. During my studies I focused on factors that modulate directional root growth regulation. The root is a complex, three-dimensional object, which continuously modifies its shape and growth path. Since the root needs to expand its surface to supply the plant with nutrients and water, it is important to understand how roots cope with changing growth conditions while exploring the soil. If the root cannot manage to grow through soil efficiently, mechanical impedance and lack of resources will also restrict shoot growth as well. Manifold signaling pathways coordinate the complex processes that underpin efficient root growth, including those modulated by phytohormones, sugars, flavonoids and other...Katedra experimentální biologie rostlinDepartment of Experimental Plant BiologyPřírodovědecká fakultaFaculty of Scienc
    corecore