20 research outputs found

    Compressive Sensing Based Channel Feedback Protocols for Spatially-Correlated Massive Antenna Arrays

    Get PDF
    Incorporating wireless transceivers with numerous antennas (such as Massive-MIMO) is a prospective way to increase the link capacity or enhance the energy efficiency of future communication systems. However, the benefits of such approach can be realized only when proper channel information is available at the transmitter. Since the amount of the channel information required by the transmitter is large with so many antennas, the feedback is arduous in practice, especially for frequency division duplexing (FDD) systems. This paper proposes channel feedback reduction techniques based on the theory of compressive sensing, which permits the transmitter to obtain channel information with acceptable accuracy under substantially reduced feedback load. Furthermore, by leveraging properties of compressive sensing, we present two adaptive feedback protocols, in which the feedback content can be dynamically configured based on channel conditions to improve the efficiency.Engineering and Applied Science

    Wireless interference networks with limited feedback

    Get PDF
    Wir betrachten das Problem der Akquirierung von Kanalzustandsinformationen an den Sendern von drahtlosen Netzwerken und entwickeln Feedbackverfahren und Sendestrategien für verschiedene Netzwerk Architekturen. Die entwickelten Verfahren werden analysiert und die Skalierung der Performance des Gesamtsystems anhand bestimmter Systemparameter bestimmt. Zuerst betrachten wir eine einzelne Zelle eines zellularen Systems und nehmen an, dass die Beamformingvektoren durch ein festes Codebuch vorgegeben sind. Wir entwickeln und analysieren ein neues Feedbackverfahren, dass Flexibilität und Robustheit vereint und dadurch effiziente und zuverlässige Kommunikation mit den Empfängern ermöglicht. Eine Analyse des Verfahrens zeigt, dass die Skalierung des Ratenverlustes durch quantisierte Kanalzustandsinformation besser ist als bei vergleichbaren Verfahren. Für das Feedbackverfahren wird ein spezieller Algorithmus entwickelt der es ermöglicht Codebücher für verschiedene Kanalmodelle zu generieren und zu optimieren. Die analytischen Ergebnisse werden durch Simulationen validiert und bestätigen einen Gewinn gegenüber vergleichbaren Verfahren. Anschließend betrachten wir zellulare Systeme mit mehreren Zellen. Wir charakterisieren die Freiheitsgrade (degrees of freedom) unter verschiedenen Annahmen über das Kanalmodell. Des weiteren entwickeln wir verschiedene Algorithmen, die die optimalen Freiheitsgrade erreichen können. Anschließend wird ein Feedbackverfahren entwickelt, dass den Feedbackaufwand für die entwickelten Algorithmen signifikant reduziert. Wir analysieren eine breite Klasse von zellularen Systemen die beliebige koordinierte Sendestrategien verwenden. Für diese Klasse von Systemen leiten wir die Skalierung des Ratenverlustes relativ zum Feedbackaufwand her. Abschließend zeigen wir, wie die analytischen Ergebnisse auf das entwickelte Feedbackverfahren angewendet werden können. Im letzten Kapitel entwickeln wir ein Framework, dass das Potenzial von Compressed Sensing nutzt um den Messaufwand und Feedbackaufwand in zellularen Systemen mit vielen Teilnehmern signifikant zu reduzieren. Das Framework ermöglicht es die Datenraten der Nutzer innerhalb gegebener Fehlerschranken zu schätzen. Grundlage ist neben Compressed Sensing ein neues Messverfahren, dass die Überlagerung von Signalen im Kanal nutzt, um zufällige nicht adaptive Messungen der Kanalkoeffizienten am Empfänger zu ermöglichen. Diese Messungen werden zu einer zentralen Steuereinheit übertragen und dort dekodiert. Wir analysieren die Genauigkeit der Rekonstruktion für einen linearen und einen nicht-linearen Dekodierer und leiten die Skalierung mit der Anzahl der Messungen her. Abschließend zeigen wir, wie der entwickelte Ansatz in zellularen Systemen angewendet werden kann.We consider the problem of acquiring accurate channel state information at the transmitters of a wireless network. We develop different feedback and transmit strategies for different network architectures and analyze their performance. First, we consider a single cell of cellular system and assume that the beamforming vectors are given by a fixed transmit codebook. We develop and analyze a new feedback and transmit strategy which combines flexibility and robustness needed for efficient and reliable communication. We prove that it has better scaling properties compared to classical results on the limited feedback problem in the broadcast channel and that this benefit improves with an increasing number of transmit antennas. We show how feedback codebooks can be designed for different propagation environments. Link level and system level simulations sustain the analytic results showing performance gains of up to 50 % or 70 % compared to zeroforcing when using multiple antennas at the base station and multiple antennas or a single antenna at the terminals, respectively. We characterize the degrees of freedom (i.e. the multiplexing gain) of multi-cellular systems under different assumptions on the channel model and for different system setups. We propose different algorithms that possibly achieve the optimal degrees of freedom. The first algorithm aims on aligning the interference at each receiver in a subspace of the available receive space. Our second algorithm aims on directly maximizing the signal-to-interference-plus-noise ratio (SINR) of all receivers. By allowing symbol extensions over time or frequency and including a user selection we are able to achieve the alignment of interference for many system setups and exploit multi-user diversity. For coordinated transmit strategies we find the scaling of the performance loss with the feedback load. A distributed interference alignment algorithm is introduced. The algorithm makes efficient use of quantized channel state information and significantly reduces the feedback overhead. We develop a framework that we call compressive rate estimation. To this end, we assume that the composite channel gain matrix (i.e. the matrix of all channel gains between all network nodes) is compressible which means it can be approximated by a sparse or low rank representation. We develop a sensing protocol that exploits the superposition principle of the wireless channel and enables the receiving nodes to obtain non-adaptive random measurements of columns of the composite channel matrix. The random measurements are fed back to a central controller who decodes the composite channel gain matrix (or parts of it) and estimates individual user rates. We analyze the rate loss for a linear and a non-linear decoder and find the scaling laws according to the number of non-adaptive measurements

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Multi-Antenna Techniques for Next Generation Cellular Communications

    Get PDF
    Future cellular communications are expected to offer substantial improvements for the pre- existing mobile services with higher data rates and lower latency as well as pioneer new types of applications that must comply with strict demands from a wider range of user types. All of these tasks require utmost efficiency in the use of spectral resources. Deploying multiple antennas introduces an additional signal dimension to wireless data transmissions, which provides a significant alternative solution against the plateauing capacity issue of the limited available spectrum. Multi-antenna techniques and the associated key enabling technologies possess unquestionable potential to play a key role in the evolution of next generation cellular systems. Spectral efficiency can be improved on downlink by concurrently serving multiple users with high-rate data connections on shared resources. In this thesis optimized multi-user multi-input multi-output (MIMO) transmissions are investigated on downlink from both filter design and resource allocation/assignment points of view. Regarding filter design, a joint baseband processing method is proposed specifically for high signal-to-noise ratio (SNR) conditions, where the necessary signaling overhead can be compensated for. Regarding resource scheduling, greedy- and genetic-based algorithms are proposed that demand lower complexity with large number of resource blocks relative to prior implementations. Channel estimation techniques are investigated for massive MIMO technology. In case of channel reciprocity, this thesis proposes an overhead reduction scheme for the signaling of user channel state information (CSI) feedback during a relative antenna calibration. In addition, a multi-cell coordination method is proposed for subspace-based blind estimators on uplink, which can be implicitly translated to downlink CSI in the presence of ideal reciprocity. Regarding non-reciprocal channels, a novel estimation technique is proposed based on reconstructing full downlink CSI from a select number of dominant propagation paths. The proposed method offers drastic compressions in user feedback reports and requires much simpler downlink training processes. Full-duplex technology can provide up to twice the spectral efficiency of conventional resource divisions. This thesis considers a full-duplex two-hop link with a MIMO relay and investigates mitigation techniques against the inherent loop-interference. Spatial-domain suppression schemes are developed for the optimization of full-duplex MIMO relaying in a coverage extension scenario on downlink. The proposed methods are demonstrated to generate data rates that closely approximate their global bounds

    Temperature aware power optimization for multicore floating-point units

    Full text link

    희소인지를 이용한 전송기술 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2019. 2. 심병효.The new wave of the technology revolution, named the fifth wireless systems, is changing our daily life dramatically. These days, unprecedented services and applications such as driverless vehicles and drone-based deliveries, smart cities and factories, remote medical diagnosis and surgery, and artificial intelligence-based personalized assistants are emerging. Communication mechanisms associated with these new applications and services are way different from traditional communications in terms of latency, energy efficiency, reliability, flexibility, and connection density. Since the current radio access mechanism cannot support these diverse services and applications, a new approach to deal with these relentless changes should be introduced. This compressed sensing (CS) paradigm is very attractive alternative to the conventional information processing operations including sampling, sensing, compression, estimation, and detection. To apply the CS techniques to wireless communication systems, there are a number of things to know and also several issues to be considered. In the last decade, CS techniques have spread rapidly in many applications such as medical imaging, machine learning, radar detection, seismology, computer science, statistics, and many others. Also, various wireless communication applications exploiting the sparsity of a target signal have been studied. Notable examples include channel estimation, interference cancellation, angle estimation, spectrum sensing, and symbol detection. The distinct feature of this work, in contrast to the conventional approaches exploiting naturally acquired sparsity, is to exploit intentionally designed sparsity to improve the quality of the communication systems. In the first part of the dissertation, we study the mapping data information into the sparse signal in downlink systems. We propose an approach, called sparse vector coding (SVC), suited for the short packet transmission. In SVC, since the data information is mapped to the position of sparse vector, whole data packet can be decoded by idenitifying nonzero positions of the sparse vector. From our simulations, we show that the packet error rate of SVC outperforms the conventional channel coding schemes at the URLLC regime. Moreover, we discuss the SVC transmission for the massive MTC access by overlapping multiple SVC-based packets into the same resources. Using the spare vector overlapping and multiuser CS decoding scheme, SVC-based transmission provides robustness against the co-channel interference and also provide comparable performance than other non-orthogonal multiple access (NOMA) schemes. By using the fact that SVC only identifies the support of sparse vector, we extend the SVC transmission without pilot transmission, called pilot-less SVC. Instead of using the support, we further exploit the magnitude of sparse vector for delivering additional information. This scheme is referred to as enhanced SVC. The key idea behind the proposed E-SVC transmission scheme is to transform the small information into a sparse vector and map the side-information into a magnitude of the sparse vector. Metaphorically, E-SVC can be thought as a standing a few poles to the empty table. As long as the number of poles is small enough and the measurements contains enough information to find out the marked cell positions, accurate recovery of E-SVC packet can be guaranteed. In the second part of this dissertation, we turn our attention to make sparsification of the non-sparse signal, especially for the pilot transmission and channel estimation. Unlike the conventional scheme where the pilot signal is transmitted without modification, the pilot signals are sent after the beamforming in the proposed technique. This work is motivated by the observation that the pilot overhead must scale linearly with the number of taps in CIR vector and the number of transmit antennas so that the conventional pilot transmission is not an appropriate option for the IoT devices. Primary goal of the proposed scheme is to minimize the nonzero entries of a time-domain channel vector by the help of multiple antennas at the basestation. To do so, we apply the time-domain sparse precoding, where each precoded channel propagates via fewer tap than the original channel vector. The received channel vector of beamformed pilots can be jointly estimated by the sparse recovery algorithm.5세대 무선통신 시스템의 새로운 기술 혁신은 무인 차량 및 항공기, 스마트 도시 및 공장, 원격 의료 진단 및 수술, 인공 지능 기반 맟춤형 지원과 같은 전례 없는 서비스 및 응용프로그램으로 부상하고 있다. 이러한 새로운 애플리케이션 및 서비스와 관련된 통신 방식은 대기 시간, 에너지 효율성, 신뢰성, 유연성 및 연결 밀도 측면에서 기존 통신과 매우 다르다. 현재의 무선 액세스 방식을 비롯한 종래의 접근법은 이러한 요구 사항을 만족할 수 없기 때문에 최근에 sparse processing과 같은 새로운 접근 방법이 연구되고 있다. 이 새로운 접근 방법은 표본 추출, 감지, 압축, 평가 및 탐지를 포함한 기존의 정보 처리에 대한 효율적인 대체기술로 활용되고 있다. 지난 10년 동안 compressed sensing (CS)기법은 의료영상, 기계학습, 탐지, 컴퓨터 과학, 통계 및 기타 여러 분야에서 빠르게 확산되었다. 또한, 신호의 희소성(sparsity)를 이용하는 CS 기법은 다양한 무선 통신이 연구되었다. 주목할만한 예로는 채널 추정, 간섭 제거, 각도 추정, 및 스펙트럼 감지가 있으며 현재까지 연구는 주어진 신호가 가지고 있는 본래의 희소성에 주목하였으나 본 논문에서는 기존의 접근 방법과 달리 인위적으로 설계된 희소성을 이용하여 통신 시스템의 성능을 향상시키는 방법을 제안한다. 우선 본 논문은 다운링크 전송에서 희소 신호 매핑을 통한 데이터 전송 방법을 제안하며 짧은 패킷 (short packet) 전송에 적합한 CS 접근법을 활용하는 기술을 제안한다. 제안하는 기술인 희소벡터코딩 (sparse vector coding, SVC)은 데이터 정보가 인공적인 희소벡터의 nonzero element의 위치에 매핑하여 전송된 데이터 패킷은 희소벡터의 0이 아닌 위치를 식별함으로 원신호 복원이 가능하다. 분석과 시뮬레이션을 통해 제안하는 SVC 기법의 패킷 오류률은 ultra-reliable and low latency communications (URLLC) 서비스를 지원을 위해 사용되는 채널코딩방식보다 우수한 성능을 보여준다. 또한, 본 논문은 SVC기술을 다음의 세가지 영역으로 확장하였다. 첫째로, 여러 개의 SVC 기반 패킷을 동일한 자원에 겹치게 전송함으로 상향링크에서 대규모 전송을 지원하는 방법을 제안한다. 중첩된 희소벡터를 다중사용자 CS 디코딩 방식을 사용하여 채널 간섭에 강인한 성능을 제공하고 비직교 다중 접속 (NOMA) 방식과 유사한 성능을 제공한다. 둘째로, SVC 기술이 희소 벡터의 support만을 식별한다는 사실을 이용하여 파일럿 전송이 필요없는 pilotless-SVC 전송 방법을 제안한다. 채널 정보가 없는 경우에도 희소 벡터의 support의 크기는 채널의 크기에 비례하기 때문에 pilot없이 복원이 가능하다. 셋째로, 희소벡터의 support의 크기에 추가 정보를 전송함으로 복원 성능을 향상 시키는 enhanced SVC (E-SVC)를 제안한다. 제안된 E-SVC 전송 방식의 핵심 아디디어는 짧은 패킷을 전송되는 정보를 희소 벡터로 변환하고 정보 복원을 보조하는 추가 정보를 희소 벡터의 크기 (magnitude)로 매핑하는 것이다. 마지막으로, SVC 기술을 파일럿 전송에 활용하는 방법을 제안한다. 특히, 채널 추정을 위해 채널 임펄스 응답의 신호를 희소화하는 프리코딩 기법을 제안한다. 파일럿 신호을 프로코딩 없이 전송되는 기존의 방식과 달리, 제안된 기술에서는 파일럿 신호를 빔포밍하여 전송한다. 제안된 기법은 기지국에서 다중 안테나를 활용하여 채널 응답의 0이 아닌 요소를 최소화하는 시간 영역 희소 프리코딩을 적용하였다. 이를 통해 더 적확한 채널 추정을 가능하며 더 적은 파일럿 오버헤드로 채널 추정이 가능하다.Abstract i Contents iv List of Tables viii List of Figures ix 1 INTRODUCTION 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Three Key Services in 5G systems . . . . . . . . . . . . . . . 2 1.1.2 Sparse Processing in Wireless Communications . . . . . . . . 4 1.2 Contributions and Organization . . . . . . . . . . . . . . . . . . . . . 7 1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Sparse Vector Coding for Downlink Ultra-reliable and Low Latency Communications 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 URLLC Service Requirements . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Ultra-High Reliability . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Coexistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 URLLC Physical Layer in 5G NR . . . . . . . . . . . . . . . . . . . 18 2.3.1 Packet Structure . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Frame Structure and Latency-sensitive Scheduling Schemes . 20 2.3.3 Solutions to the Coexistence Problem . . . . . . . . . . . . . 22 2.4 Short-sized Packet in LTE-Advanced Downlink . . . . . . . . . . . . 24 2.5 Sparse Vector Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.1 SVC Encoding and Transmission . . . . . . . . . . . . . . . 25 2.5.2 SVC Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.3 Identification of False Alarm . . . . . . . . . . . . . . . . . . 33 2.6 SVC Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 36 2.7 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.1 Codebook Design . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.2 High-order Modulation . . . . . . . . . . . . . . . . . . . . . 49 2.7.3 Diversity Transmission . . . . . . . . . . . . . . . . . . . . . 50 2.7.4 SVC without Pilot . . . . . . . . . . . . . . . . . . . . . . . 50 2.7.5 Threshold to Prevent False Alarm Event . . . . . . . . . . . . 51 2.8 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 52 2.8.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 52 2.8.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 53 2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3 Sparse Vector Coding for Uplink Massive Machine-type Communications 59 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2 Uplink NOMA transmission for mMTC . . . . . . . . . . . . . . . . 61 3.3 Sparse Vector Coding based NOMA for mMTC . . . . . . . . . . . . 63 3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.2 Joint Multiuser Decoding . . . . . . . . . . . . . . . . . . . . 66 3.4 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 68 3.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 69 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Pilot-less Sparse Vector Coding for Short Packet Transmission 72 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Pilot-less Sparse Vector Coding Processing . . . . . . . . . . . . . . 75 4.2.1 SVC Processing with Pilot Symbols . . . . . . . . . . . . . . 75 4.2.2 Pilot-less SVC . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.3 PL-SVC Decoding in Multiple Basestation Antennas . . . . . 78 4.3 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 81 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 Joint Analog and Quantized Feedback via Sparse Vector Coding 84 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2 System Model for Joint Spase Vector Coding . . . . . . . . . . . . . 86 5.3 Sparse Recovery Algorithm and Performance Analysis . . . . . . . . 90 5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.4.1 Linear Interpolation of Sensing Information . . . . . . . . . . 96 5.4.2 Linear Combined Feedback . . . . . . . . . . . . . . . . . . 96 5.4.3 One-shot Packet Transmission . . . . . . . . . . . . . . . . . 96 5.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . 98 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6 Sparse Beamforming for Enhanced Mobile Broadband Communications 101 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.1.1 Increase the number of transmit antennas . . . . . . . . . . . 102 6.1.2 2D active antenna system (AAS) . . . . . . . . . . . . . . . . 103 6.1.3 3D channel environment . . . . . . . . . . . . . . . . . . . . 104 6.1.4 RS transmission for CSI acquisition . . . . . . . . . . . . . . 106 6.2 System Design and Standardization of FD-MIMO Systems . . . . . . 107 6.2.1 Deployment scenarios . . . . . . . . . . . . . . . . . . . . . 108 6.2.2 Antenna configurations . . . . . . . . . . . . . . . . . . . . . 108 6.2.3 TXRU architectures . . . . . . . . . . . . . . . . . . . . . . 109 6.2.4 New CSI-RS transmission strategy . . . . . . . . . . . . . . . 112 6.2.5 CSI feedback mechanisms for FD-MIMO systems . . . . . . 114 6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3.1 Basic System Model . . . . . . . . . . . . . . . . . . . . . . 116 6.3.2 Beamformed Pilot Transmission . . . . . . . . . . . . . . . . 117 6.4 Sparsification of Pilot Beamforming . . . . . . . . . . . . . . . . . . 118 6.4.1 Time-domain System Model without Pilot Beamforming . . . 119 6.4.2 Pilot Beamforming . . . . . . . . . . . . . . . . . . . . . . . 120 6.5 Channel Estimation of Beamformed Pilots . . . . . . . . . . . . . . . 124 6.5.1 Recovery using Multiple Measurement Vector . . . . . . . . . 124 6.5.2 MSE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.6 Simulations and Discussion . . . . . . . . . . . . . . . . . . . . . . . 129 6.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 129 6.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 130 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7 Conclusion 136 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 139 Abstract (In Korean) 152Docto

    Collaborative Sensing and Communication Schemes for Cooperative Wireless Sensor Networks

    Get PDF
    Energy conservation is considered to be one of the key design challenges within resource constrained wireless sensor networks (WSNs) that leads the researchers to investigate energy efficient protocols with some application specific challenges. Dynamic clustering scheme within the deployed sensor nodes is generally considered as one of the energy conservation techniques. However, unbalanced distribution of cluster heads, highly variable number of sensor nodes in the clusters and high number of sensor nodes involved in event reporting tend to drain out the network energy quickly, resulting in unplanned decrease in network lifetime. Performing power aware signal processing, defining communication methods that can provide progressive accuracy and, optimising processing and communication for signal transmission are the challenging tasks. In this thesis, energy efficient solutions are proposed for collaborative sensing and cooperative communication within resource constrained WSNs. A dynamic and cooperative clustering as well as neighbourhood formation scheme is proposed that is expected to evenly distribute the energy demand from the cluster heads and optimise the number of sensor nodes involved in event reporting. The distributive and dynamic behaviour of the proposed framework provides an energy efficient self-organising solution for WSNs that results in an improved network lifetime. The proposed framework is independent of the nature of the sensing type to support applications that require either time-driven sensing, event-driven sensing or hybrid of both sensing types. A cooperative resource selection and transmission scheme is also proposed to improve the performance of collaborative WSNs in terms of maintaining link reliability. As a part of the proposed cooperative nature of transmission, the transmitreceive antennae selection scheme and lattice reduction algorithm have also been considered. It is assumed that the channel state information is estimated at the ii receiver and there is a feedback link between the wireless sensing nodes and the fusion centre receiver. For the ease of system design engineer to achieve a predefined capacity or quality of service, a set of analytical frameworks that provide tighter error performance lower bound for zero forcing (ZF), minimum mean square error (MMSE) and maximum likelihood (ML) detection schemes are also presented. The dynamic behaviour has been adopted within the framework with a proposed index derived from the received measure of the channel quality, which has been attained through the feedback channel from the fusion centre. The dynamic property of the proposed framework makes it robust against time-varying behaviour of the propagation environment. Finally, a unified framework of collaborative sensing and communication schemes for cooperative WSNs is proposed to provide energy efficient solutions within resource constrained environments. The proposed unified framework is fully decentralised which reduces the amount of information required to be broadcasted. Such distributive capability accelerates the decision-making process and enhances the energy conservation. Furthermore, it is validated by simulation results that the proposed unified framework provides a trade-off between network lifetime and transmission reliability while maintaining required quality of service

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&
    corecore