742 research outputs found

    Architectures and Key Technical Challenges for 5G Systems Incorporating Satellites

    Get PDF
    Satellite Communication systems are a promising solution to extend and complement terrestrial networks in unserved or under-served areas. This aspect is reflected by recent commercial and standardisation endeavours. In particular, 3GPP recently initiated a Study Item for New Radio-based, i.e., 5G, Non-Terrestrial Networks aimed at deploying satellite systems either as a stand-alone solution or as an integration to terrestrial networks in mobile broadband and machine-type communication scenarios. However, typical satellite channel impairments, as large path losses, delays, and Doppler shifts, pose severe challenges to the realisation of a satellite-based NR network. In this paper, based on the architecture options currently being discussed in the standardisation fora, we discuss and assess the impact of the satellite channel characteristics on the physical and Medium Access Control layers, both in terms of transmitted waveforms and procedures for enhanced Mobile BroadBand (eMBB) and NarrowBand-Internet of Things (NB-IoT) applications. The proposed analysis shows that the main technical challenges are related to the PHY/MAC procedures, in particular Random Access (RA), Timing Advance (TA), and Hybrid Automatic Repeat reQuest (HARQ) and, depending on the considered service and architecture, different solutions are proposed.Comment: Submitted to Transactions on Vehicular Technologies, April 201

    Implementation of Deep-Learning-Based CSI Feedback Reporting on 5G NR-Compliant Link-Level Simulator

    Get PDF
    Advances in machine learning have widened the range of its applications in many fields. In particular, deep learning has attracted much interest for its ability to provide solutions where the derivation of a rigorous mathematical model of the problem is troublesome. Our interest was drawn to the application of deep learning for channel state information feedback reporting, a crucial problem in frequency division duplexing (FDD) 5G networks, where knowledge of the channel characteristics is fundamental to exploiting the full potential of multiple-input multiple-output (MIMO) systems. We designed a framework adopting a 5G New Radio convolutional neural network, called NR-CsiNet, with the aim of compressing the channel matrix experienced by the user at the receiver side and then reconstructing it at the transmitter side. In contrast to similar solutions, our framework is based on a 5G New Radio fully compliant simulator, thus implementing a channel generator based on the latest 3GPP 3-D channel model. Moreover, realistic 5G scenarios are considered by including multi-receiving antenna schemes and noisy downlink channel estimation. Simulations were carried out to analyze and compare the performance with current feedback reporting schemes, showing promising results for this approach from the point of view of the block error rate and throughput of the 5G data channel

    ํฌ์†Œ์ธ์ง€๋ฅผ ์ด์šฉํ•œ ์ „์†ก๊ธฐ์ˆ  ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2019. 2. ์‹ฌ๋ณ‘ํšจ.The new wave of the technology revolution, named the fifth wireless systems, is changing our daily life dramatically. These days, unprecedented services and applications such as driverless vehicles and drone-based deliveries, smart cities and factories, remote medical diagnosis and surgery, and artificial intelligence-based personalized assistants are emerging. Communication mechanisms associated with these new applications and services are way different from traditional communications in terms of latency, energy efficiency, reliability, flexibility, and connection density. Since the current radio access mechanism cannot support these diverse services and applications, a new approach to deal with these relentless changes should be introduced. This compressed sensing (CS) paradigm is very attractive alternative to the conventional information processing operations including sampling, sensing, compression, estimation, and detection. To apply the CS techniques to wireless communication systems, there are a number of things to know and also several issues to be considered. In the last decade, CS techniques have spread rapidly in many applications such as medical imaging, machine learning, radar detection, seismology, computer science, statistics, and many others. Also, various wireless communication applications exploiting the sparsity of a target signal have been studied. Notable examples include channel estimation, interference cancellation, angle estimation, spectrum sensing, and symbol detection. The distinct feature of this work, in contrast to the conventional approaches exploiting naturally acquired sparsity, is to exploit intentionally designed sparsity to improve the quality of the communication systems. In the first part of the dissertation, we study the mapping data information into the sparse signal in downlink systems. We propose an approach, called sparse vector coding (SVC), suited for the short packet transmission. In SVC, since the data information is mapped to the position of sparse vector, whole data packet can be decoded by idenitifying nonzero positions of the sparse vector. From our simulations, we show that the packet error rate of SVC outperforms the conventional channel coding schemes at the URLLC regime. Moreover, we discuss the SVC transmission for the massive MTC access by overlapping multiple SVC-based packets into the same resources. Using the spare vector overlapping and multiuser CS decoding scheme, SVC-based transmission provides robustness against the co-channel interference and also provide comparable performance than other non-orthogonal multiple access (NOMA) schemes. By using the fact that SVC only identifies the support of sparse vector, we extend the SVC transmission without pilot transmission, called pilot-less SVC. Instead of using the support, we further exploit the magnitude of sparse vector for delivering additional information. This scheme is referred to as enhanced SVC. The key idea behind the proposed E-SVC transmission scheme is to transform the small information into a sparse vector and map the side-information into a magnitude of the sparse vector. Metaphorically, E-SVC can be thought as a standing a few poles to the empty table. As long as the number of poles is small enough and the measurements contains enough information to find out the marked cell positions, accurate recovery of E-SVC packet can be guaranteed. In the second part of this dissertation, we turn our attention to make sparsification of the non-sparse signal, especially for the pilot transmission and channel estimation. Unlike the conventional scheme where the pilot signal is transmitted without modification, the pilot signals are sent after the beamforming in the proposed technique. This work is motivated by the observation that the pilot overhead must scale linearly with the number of taps in CIR vector and the number of transmit antennas so that the conventional pilot transmission is not an appropriate option for the IoT devices. Primary goal of the proposed scheme is to minimize the nonzero entries of a time-domain channel vector by the help of multiple antennas at the basestation. To do so, we apply the time-domain sparse precoding, where each precoded channel propagates via fewer tap than the original channel vector. The received channel vector of beamformed pilots can be jointly estimated by the sparse recovery algorithm.5์„ธ๋Œ€ ๋ฌด์„ ํ†ต์‹  ์‹œ์Šคํ…œ์˜ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ  ํ˜์‹ ์€ ๋ฌด์ธ ์ฐจ๋Ÿ‰ ๋ฐ ํ•ญ๊ณต๊ธฐ, ์Šค๋งˆํŠธ ๋„์‹œ ๋ฐ ๊ณต์žฅ, ์›๊ฒฉ ์˜๋ฃŒ ์ง„๋‹จ ๋ฐ ์ˆ˜์ˆ , ์ธ๊ณต ์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๋งŸ์ถคํ˜• ์ง€์›๊ณผ ๊ฐ™์€ ์ „๋ก€ ์—†๋Š” ์„œ๋น„์Šค ๋ฐ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ๋ถ€์ƒํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒˆ๋กœ์šด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋ฐ ์„œ๋น„์Šค์™€ ๊ด€๋ จ๋œ ํ†ต์‹  ๋ฐฉ์‹์€ ๋Œ€๊ธฐ ์‹œ๊ฐ„, ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ, ์‹ ๋ขฐ์„ฑ, ์œ ์—ฐ์„ฑ ๋ฐ ์—ฐ๊ฒฐ ๋ฐ€๋„ ์ธก๋ฉด์—์„œ ๊ธฐ์กด ํ†ต์‹ ๊ณผ ๋งค์šฐ ๋‹ค๋ฅด๋‹ค. ํ˜„์žฌ์˜ ๋ฌด์„  ์•ก์„ธ์Šค ๋ฐฉ์‹์„ ๋น„๋กฏํ•œ ์ข…๋ž˜์˜ ์ ‘๊ทผ๋ฒ•์€ ์ด๋Ÿฌํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์„ ๋งŒ์กฑํ•  ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์— ์ตœ๊ทผ์— sparse processing๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ๋ฒ•์ด ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ด ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ๋ฒ•์€ ํ‘œ๋ณธ ์ถ”์ถœ, ๊ฐ์ง€, ์••์ถ•, ํ‰๊ฐ€ ๋ฐ ํƒ์ง€๋ฅผ ํฌํ•จํ•œ ๊ธฐ์กด์˜ ์ •๋ณด ์ฒ˜๋ฆฌ์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ๋Œ€์ฒด๊ธฐ์ˆ ๋กœ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ง€๋‚œ 10๋…„ ๋™์•ˆ compressed sensing (CS)๊ธฐ๋ฒ•์€ ์˜๋ฃŒ์˜์ƒ, ๊ธฐ๊ณ„ํ•™์Šต, ํƒ์ง€, ์ปดํ“จํ„ฐ ๊ณผํ•™, ํ†ต๊ณ„ ๋ฐ ๊ธฐํƒ€ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ ๋น ๋ฅด๊ฒŒ ํ™•์‚ฐ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์‹ ํ˜ธ์˜ ํฌ์†Œ์„ฑ(sparsity)๋ฅผ ์ด์šฉํ•˜๋Š” CS ๊ธฐ๋ฒ•์€ ๋‹ค์–‘ํ•œ ๋ฌด์„  ํ†ต์‹ ์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ฃผ๋ชฉํ• ๋งŒํ•œ ์˜ˆ๋กœ๋Š” ์ฑ„๋„ ์ถ”์ •, ๊ฐ„์„ญ ์ œ๊ฑฐ, ๊ฐ๋„ ์ถ”์ •, ๋ฐ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ฐ์ง€๊ฐ€ ์žˆ์œผ๋ฉฐ ํ˜„์žฌ๊นŒ์ง€ ์—ฐ๊ตฌ๋Š” ์ฃผ์–ด์ง„ ์‹ ํ˜ธ๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ณธ๋ž˜์˜ ํฌ์†Œ์„ฑ์— ์ฃผ๋ชฉํ•˜์˜€์œผ๋‚˜ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด์˜ ์ ‘๊ทผ ๋ฐฉ๋ฒ•๊ณผ ๋‹ฌ๋ฆฌ ์ธ์œ„์ ์œผ๋กœ ์„ค๊ณ„๋œ ํฌ์†Œ์„ฑ์„ ์ด์šฉํ•˜์—ฌ ํ†ต์‹  ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ์„  ๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์šด๋งํฌ ์ „์†ก์—์„œ ํฌ์†Œ ์‹ ํ˜ธ ๋งคํ•‘์„ ํ†ตํ•œ ๋ฐ์ดํ„ฐ ์ „์†ก ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๋ฉฐ ์งง์€ ํŒจํ‚ท (short packet) ์ „์†ก์— ์ ํ•ฉํ•œ CS ์ ‘๊ทผ๋ฒ•์„ ํ™œ์šฉํ•˜๋Š” ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ธฐ์ˆ ์ธ ํฌ์†Œ๋ฒกํ„ฐ์ฝ”๋”ฉ (sparse vector coding, SVC)์€ ๋ฐ์ดํ„ฐ ์ •๋ณด๊ฐ€ ์ธ๊ณต์ ์ธ ํฌ์†Œ๋ฒกํ„ฐ์˜ nonzero element์˜ ์œ„์น˜์— ๋งคํ•‘ํ•˜์—ฌ ์ „์†ก๋œ ๋ฐ์ดํ„ฐ ํŒจํ‚ท์€ ํฌ์†Œ๋ฒกํ„ฐ์˜ 0์ด ์•„๋‹Œ ์œ„์น˜๋ฅผ ์‹๋ณ„ํ•จ์œผ๋กœ ์›์‹ ํ˜ธ ๋ณต์›์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ถ„์„๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ œ์•ˆํ•˜๋Š” SVC ๊ธฐ๋ฒ•์˜ ํŒจํ‚ท ์˜ค๋ฅ˜๋ฅ ์€ ultra-reliable and low latency communications (URLLC) ์„œ๋น„์Šค๋ฅผ ์ง€์›์„ ์œ„ํ•ด ์‚ฌ์šฉ๋˜๋Š” ์ฑ„๋„์ฝ”๋”ฉ๋ฐฉ์‹๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ, ๋ณธ ๋…ผ๋ฌธ์€ SVC๊ธฐ์ˆ ์„ ๋‹ค์Œ์˜ ์„ธ๊ฐ€์ง€ ์˜์—ญ์œผ๋กœ ํ™•์žฅํ•˜์˜€๋‹ค. ์ฒซ์งธ๋กœ, ์—ฌ๋Ÿฌ ๊ฐœ์˜ SVC ๊ธฐ๋ฐ˜ ํŒจํ‚ท์„ ๋™์ผํ•œ ์ž์›์— ๊ฒน์น˜๊ฒŒ ์ „์†กํ•จ์œผ๋กœ ์ƒํ–ฅ๋งํฌ์—์„œ ๋Œ€๊ทœ๋ชจ ์ „์†ก์„ ์ง€์›ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ค‘์ฒฉ๋œ ํฌ์†Œ๋ฒกํ„ฐ๋ฅผ ๋‹ค์ค‘์‚ฌ์šฉ์ž CS ๋””์ฝ”๋”ฉ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฑ„๋„ ๊ฐ„์„ญ์— ๊ฐ•์ธํ•œ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜๊ณ  ๋น„์ง๊ต ๋‹ค์ค‘ ์ ‘์† (NOMA) ๋ฐฉ์‹๊ณผ ์œ ์‚ฌํ•œ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๋‘˜์งธ๋กœ, SVC ๊ธฐ์ˆ ์ด ํฌ์†Œ ๋ฒกํ„ฐ์˜ support๋งŒ์„ ์‹๋ณ„ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ด์šฉํ•˜์—ฌ ํŒŒ์ผ๋Ÿฟ ์ „์†ก์ด ํ•„์š”์—†๋Š” pilotless-SVC ์ „์†ก ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ฑ„๋„ ์ •๋ณด๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ์—๋„ ํฌ์†Œ ๋ฒกํ„ฐ์˜ support์˜ ํฌ๊ธฐ๋Š” ์ฑ„๋„์˜ ํฌ๊ธฐ์— ๋น„๋ก€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— pilot์—†์ด ๋ณต์›์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์…‹์งธ๋กœ, ํฌ์†Œ๋ฒกํ„ฐ์˜ support์˜ ํฌ๊ธฐ์— ์ถ”๊ฐ€ ์ •๋ณด๋ฅผ ์ „์†กํ•จ์œผ๋กœ ๋ณต์› ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ ์‹œํ‚ค๋Š” enhanced SVC (E-SVC)๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ E-SVC ์ „์†ก ๋ฐฉ์‹์˜ ํ•ต์‹ฌ ์•„๋””๋””์–ด๋Š” ์งง์€ ํŒจํ‚ท์„ ์ „์†ก๋˜๋Š” ์ •๋ณด๋ฅผ ํฌ์†Œ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ  ์ •๋ณด ๋ณต์›์„ ๋ณด์กฐํ•˜๋Š” ์ถ”๊ฐ€ ์ •๋ณด๋ฅผ ํฌ์†Œ ๋ฒกํ„ฐ์˜ ํฌ๊ธฐ (magnitude)๋กœ ๋งคํ•‘ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, SVC ๊ธฐ์ˆ ์„ ํŒŒ์ผ๋Ÿฟ ์ „์†ก์— ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํŠนํžˆ, ์ฑ„๋„ ์ถ”์ •์„ ์œ„ํ•ด ์ฑ„๋„ ์ž„ํŽ„์Šค ์‘๋‹ต์˜ ์‹ ํ˜ธ๋ฅผ ํฌ์†Œํ™”ํ•˜๋Š” ํ”„๋ฆฌ์ฝ”๋”ฉ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํŒŒ์ผ๋Ÿฟ ์‹ ํ˜ธ์„ ํ”„๋กœ์ฝ”๋”ฉ ์—†์ด ์ „์†ก๋˜๋Š” ๊ธฐ์กด์˜ ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ, ์ œ์•ˆ๋œ ๊ธฐ์ˆ ์—์„œ๋Š” ํŒŒ์ผ๋Ÿฟ ์‹ ํ˜ธ๋ฅผ ๋น”ํฌ๋ฐํ•˜์—ฌ ์ „์†กํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ๊ธฐ์ง€๊ตญ์—์„œ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ฑ„๋„ ์‘๋‹ต์˜ 0์ด ์•„๋‹Œ ์š”์†Œ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ์‹œ๊ฐ„ ์˜์—ญ ํฌ์†Œ ํ”„๋ฆฌ์ฝ”๋”ฉ์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋” ์ ํ™•ํ•œ ์ฑ„๋„ ์ถ”์ •์„ ๊ฐ€๋Šฅํ•˜๋ฉฐ ๋” ์ ์€ ํŒŒ์ผ๋Ÿฟ ์˜ค๋ฒ„ํ—ค๋“œ๋กœ ์ฑ„๋„ ์ถ”์ •์ด ๊ฐ€๋Šฅํ•˜๋‹ค.Abstract i Contents iv List of Tables viii List of Figures ix 1 INTRODUCTION 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Three Key Services in 5G systems . . . . . . . . . . . . . . . 2 1.1.2 Sparse Processing in Wireless Communications . . . . . . . . 4 1.2 Contributions and Organization . . . . . . . . . . . . . . . . . . . . . 7 1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Sparse Vector Coding for Downlink Ultra-reliable and Low Latency Communications 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 URLLC Service Requirements . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Ultra-High Reliability . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Coexistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 URLLC Physical Layer in 5G NR . . . . . . . . . . . . . . . . . . . 18 2.3.1 Packet Structure . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Frame Structure and Latency-sensitive Scheduling Schemes . 20 2.3.3 Solutions to the Coexistence Problem . . . . . . . . . . . . . 22 2.4 Short-sized Packet in LTE-Advanced Downlink . . . . . . . . . . . . 24 2.5 Sparse Vector Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.1 SVC Encoding and Transmission . . . . . . . . . . . . . . . 25 2.5.2 SVC Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.3 Identification of False Alarm . . . . . . . . . . . . . . . . . . 33 2.6 SVC Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 36 2.7 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.1 Codebook Design . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.2 High-order Modulation . . . . . . . . . . . . . . . . . . . . . 49 2.7.3 Diversity Transmission . . . . . . . . . . . . . . . . . . . . . 50 2.7.4 SVC without Pilot . . . . . . . . . . . . . . . . . . . . . . . 50 2.7.5 Threshold to Prevent False Alarm Event . . . . . . . . . . . . 51 2.8 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 52 2.8.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 52 2.8.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 53 2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3 Sparse Vector Coding for Uplink Massive Machine-type Communications 59 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2 Uplink NOMA transmission for mMTC . . . . . . . . . . . . . . . . 61 3.3 Sparse Vector Coding based NOMA for mMTC . . . . . . . . . . . . 63 3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.2 Joint Multiuser Decoding . . . . . . . . . . . . . . . . . . . . 66 3.4 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 68 3.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 69 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Pilot-less Sparse Vector Coding for Short Packet Transmission 72 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Pilot-less Sparse Vector Coding Processing . . . . . . . . . . . . . . 75 4.2.1 SVC Processing with Pilot Symbols . . . . . . . . . . . . . . 75 4.2.2 Pilot-less SVC . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.3 PL-SVC Decoding in Multiple Basestation Antennas . . . . . 78 4.3 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 81 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 Joint Analog and Quantized Feedback via Sparse Vector Coding 84 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2 System Model for Joint Spase Vector Coding . . . . . . . . . . . . . 86 5.3 Sparse Recovery Algorithm and Performance Analysis . . . . . . . . 90 5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.4.1 Linear Interpolation of Sensing Information . . . . . . . . . . 96 5.4.2 Linear Combined Feedback . . . . . . . . . . . . . . . . . . 96 5.4.3 One-shot Packet Transmission . . . . . . . . . . . . . . . . . 96 5.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . 98 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6 Sparse Beamforming for Enhanced Mobile Broadband Communications 101 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.1.1 Increase the number of transmit antennas . . . . . . . . . . . 102 6.1.2 2D active antenna system (AAS) . . . . . . . . . . . . . . . . 103 6.1.3 3D channel environment . . . . . . . . . . . . . . . . . . . . 104 6.1.4 RS transmission for CSI acquisition . . . . . . . . . . . . . . 106 6.2 System Design and Standardization of FD-MIMO Systems . . . . . . 107 6.2.1 Deployment scenarios . . . . . . . . . . . . . . . . . . . . . 108 6.2.2 Antenna configurations . . . . . . . . . . . . . . . . . . . . . 108 6.2.3 TXRU architectures . . . . . . . . . . . . . . . . . . . . . . 109 6.2.4 New CSI-RS transmission strategy . . . . . . . . . . . . . . . 112 6.2.5 CSI feedback mechanisms for FD-MIMO systems . . . . . . 114 6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3.1 Basic System Model . . . . . . . . . . . . . . . . . . . . . . 116 6.3.2 Beamformed Pilot Transmission . . . . . . . . . . . . . . . . 117 6.4 Sparsification of Pilot Beamforming . . . . . . . . . . . . . . . . . . 118 6.4.1 Time-domain System Model without Pilot Beamforming . . . 119 6.4.2 Pilot Beamforming . . . . . . . . . . . . . . . . . . . . . . . 120 6.5 Channel Estimation of Beamformed Pilots . . . . . . . . . . . . . . . 124 6.5.1 Recovery using Multiple Measurement Vector . . . . . . . . . 124 6.5.2 MSE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.6 Simulations and Discussion . . . . . . . . . . . . . . . . . . . . . . . 129 6.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 129 6.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 130 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7 Conclusion 136 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 139 Abstract (In Korean) 152Docto

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order toย solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wirelessย network field also exploited this advanced theory to overcome longย term evolution (LTE) challenges such as resource allocation, whichย is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance.ย However, the standard does not specify the optimization approach toย execute the radio resource management and therefore it was left openย for studies. This paper presents a survey of the existing game theoryย based solution for 4G-LTE radio resource allocation problem and itsย optimization

    Joint Domain Based Massive Access for Small Packets Traffic of Uplink Wireless Channel

    Full text link
    The fifth generation (5G) communication scenarios such as the cellular network and the emerging machine type communications will produce massive small packets. To support massive connectivity and avoid signaling overhead caused by the transmission of those small packets, this paper proposes a novel method to improve the transmission efficiency for massive connections of wireless uplink channel. The proposed method combines compressive sensing (CS) with power domain NOMA jointly, especially neither the scheduling nor the centralized power allocation is necessary in the method. Both the analysis and simulation show that the method can support up to two or three times overloading.Comment: 6 pages, 5 figures.submitted to globecom 201
    • โ€ฆ
    corecore