238 research outputs found

    A first step towards on-device monitoring of body sounds in the wild

    Get PDF
    Body sounds provide rich information about the state of the human body and can be useful in many medical applications. Auscultation, the practice of listening to body sounds, has been used for centuries in respiratory and cardiac medicine to diagnose or track disease progression. To date, however, its use has been confined to clinical and highly controlled settings. Our work addresses this limitation: we devise a chest-mounted wearable for continuous monitoring of body sounds, that leverages data processing algorithms that run on-device. We concentrate on the detection of heart sounds to perform heart rate monitoring. To improve robustness to ambient noise and motion artefacts, our device uses an algorithm that explicitly segments the collected audio into the phases of the cardiac cycle. Our pilot study with 9 users demonstrates that it is possible to obtain heart rate estimates that are competitive with commercial heart rate monitors, with low enough power consumption for continuous use.ER

    Effect of cognitive load on drivers’ State and task performance during automated driving: Introducing a novel method for determining stabilisation time following take-over of control

    Get PDF
    This research paper explores the impact of cognitive load on drivers’ physiological state and driving performance during an automated driving to manual control transition scenario, using a driving simulator. Whilst driving in the automated mode, cognitive load was manipulated using the “N-Back” task, which participants engaged with via a visual display. Results suggest that non-optimal levels of workload during the automated driving conditions impair driving performance, especially lateral control of the vehicle, and the magnitude of this impairment varied with increasing cognitive load. In addition to these findings, the present paper introduces a novel method for determining stabilisation times of both driver state and driving performance indicators following a transition of vehicle control. Using this method we demonstrate that mean and standard deviation of lane position impairments were found to take longer to stabilise following transition to manual driving following a higher level of cognitive load during the automated driving period, taking up to 22 s for driving performance to normalise after take-over. In addition, heart rate parameters take between 20 and 30 s to stabilise following a planned take-over request. Finally, this paper demonstrates how the magnitude of cognitive load can be estimated in context of automated driving using physiological measures, captured by consumer electronic devices. We discuss the impact our findings have on the design of SAE Level 3 systems. Relevant suggestions are provided to the research community and automakers working on future implementation of vehicles capable of conditional automation

    PRESENT AND FUTURE PERVASIVE HEALTHCARE METHODOLOGIES: INTELLIGENT BODY DEVICES, PROCESSING AND MODELING TO SEARCH FOR NEW CARDIOVASCULAR AND PHYSIOLOGICAL BIOMARKERS

    Get PDF
    The motivation behind this work comes from the area of pervasive computing technologies for healthcare and wearable healthcare IT systems, an emerging field of research that brings in revolutionary paradigms for computing models in the 21st century. The aim of this thesis is focused on emerging personal health technologies and pattern recognition strategies for early diagnosis and personalized treatment and rehabilitation for individuals with cardiovascular and neurophysiological diseases. Attention was paid to the development of an intelligent system for the automatic classification of cardiac valve disease for screening purposes. Promising results were reported with the possibility to implement a new screening strategy for the diagnosis of cardiac valve disease in developing countries. A novel assistive architecture for the elderly able to non-invasively assess muscle fatigue by surface electromyography using wireless platform during exercise with an ergonomic platform was presented. Finally a wearable chest belt for ECG monitoring to investigate the psycho-physiological effects of the autonomic system and a wearable technology for monitoring of knee kinematics and recognition of ambulatory activities were characterized to evaluate the reliability for clinical purposes of collected data. The potential impact in the clinical arena of this research would be extremely important, since promising data show how such emerging personal technologies and methodologies are effective in several scenarios to early screening and discovery of novel diagnostic and prognostic biomarkers

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF
    • …
    corecore