18,052 research outputs found

    A Survey of Parallel Sequential Pattern Mining

    Full text link
    With the growing popularity of shared resources, large volumes of complex data of different types are collected automatically. Traditional data mining algorithms generally have problems and challenges including huge memory cost, low processing speed, and inadequate hard disk space. As a fundamental task of data mining, sequential pattern mining (SPM) is used in a wide variety of real-life applications. However, it is more complex and challenging than other pattern mining tasks, i.e., frequent itemset mining and association rule mining, and also suffers from the above challenges when handling the large-scale data. To solve these problems, mining sequential patterns in a parallel or distributed computing environment has emerged as an important issue with many applications. In this paper, an in-depth survey of the current status of parallel sequential pattern mining (PSPM) is investigated and provided, including detailed categorization of traditional serial SPM approaches, and state of the art parallel SPM. We review the related work of parallel sequential pattern mining in detail, including partition-based algorithms for PSPM, Apriori-based PSPM, pattern growth based PSPM, and hybrid algorithms for PSPM, and provide deep description (i.e., characteristics, advantages, disadvantages and summarization) of these parallel approaches of PSPM. Some advanced topics for PSPM, including parallel quantitative / weighted / utility sequential pattern mining, PSPM from uncertain data and stream data, hardware acceleration for PSPM, are further reviewed in details. Besides, we review and provide some well-known open-source software of PSPM. Finally, we summarize some challenges and opportunities of PSPM in the big data era.Comment: Accepted by ACM Trans. on Knowl. Discov. Data, 33 page

    Evaluation of Frequent Itemset Mining Platforms using Apriori and FP-Growth Algorithm

    Full text link
    With the overwhelming amount of complex and heterogeneous data pouring from any-where, any-time, and any-device, there is undeniably an era of Big Data. The emergence of the Big Data as a disruptive technology for next generation of intelligent systems, has brought many issues of how to extract and make use of the knowledge obtained from the data within short times, limited budget and under high rates of data generation. Companies are recognizing that big data can be used to make more accurate predictions, and can be used to enhance the business with the help of appropriate association rule mining algorithm. To help these organizations, with which software and algorithm is more appropriate for them depending on their dataset, we compared the most famous three MapReduce based software Hadoop, Spark, Flink on two widely used algorithms Apriori and Fp-Growth on different scales of dataset

    State of the Art, Evaluation and Recommendations regarding "Document Processing and Visualization Techniques"

    Full text link
    Several Networks of Excellence have been set up in the framework of the European FP5 research program. Among these Networks of Excellence, the NEMIS project focuses on the field of Text Mining. Within this field, document processing and visualization was identified as one of the key topics and the WG1 working group was created in the NEMIS project, to carry out a detailed survey of techniques associated with the text mining process and to identify the relevant research topics in related research areas. In this document we present the results of this comprehensive survey. The report includes a description of the current state-of-the-art and practice, a roadmap for follow-up research in the identified areas, and recommendations for anticipated technological development in the domain of text mining.Comment: 54 pages, Report of Working Group 1 for the European Network of Excellence (NoE) in Text Mining and its Applications in Statistics (NEMIS

    Parallel and Distributed Collaborative Filtering: A Survey

    Full text link
    Collaborative filtering is amongst the most preferred techniques when implementing recommender systems. Recently, great interest has turned towards parallel and distributed implementations of collaborative filtering algorithms. This work is a survey of the parallel and distributed collaborative filtering implementations, aiming not only to provide a comprehensive presentation of the field's development, but also to offer future research orientation by highlighting the issues that need to be further developed.Comment: 46 page

    When data mining meets optimization: A case study on the quadratic assignment problem

    Full text link
    This paper presents a hybrid approach called frequent pattern based search that combines data mining and optimization. The proposed method uses a data mining procedure to mine frequent patterns from a set of high-quality solutions collected from previous search, and the mined frequent patterns are then employed to build starting solutions that are improved by an optimization procedure. After presenting the general approach and its composing ingredients, we illustrate its application to solve the well-known and challenging quadratic assignment problem. Computational results on the 21 hardest benchmark instances show that the proposed approach competes favorably with state-of-the-art algorithms both in terms of solution quality and computing time

    Beneath the Tip of the Iceberg: Current Challenges and New Directions in Sentiment Analysis Research

    Full text link
    Sentiment analysis as a field has come a long way since it was first introduced as a task nearly 20 years ago. It has widespread commercial applications in various domains like marketing, risk management, market research, and politics, to name a few. Given its saturation in specific subtasks -- such as sentiment polarity classification -- and datasets, there is an underlying perception that this field has reached its maturity. In this article, we discuss this perception by pointing out the shortcomings and under-explored, yet key aspects of this field that are necessary to attain true sentiment understanding. We analyze the significant leaps responsible for its current relevance. Further, we attempt to chart a possible course for this field that covers many overlooked and unanswered questions.Comment: Published in the IEEE Transactions on Affective Computing (TAFFC

    Analytics for the Internet of Things: A Survey

    Full text link
    The Internet of Things (IoT) envisions a world-wide, interconnected network of smart physical entities. These physical entities generate a large amount of data in operation and as the IoT gains momentum in terms of deployment, the combined scale of those data seems destined to continue to grow. Increasingly, applications for the IoT involve analytics. Data analytics is the process of deriving knowledge from data, generating value like actionable insights from them. This article reviews work in the IoT and big data analytics from the perspective of their utility in creating efficient, effective and innovative applications and services for a wide spectrum of domains. We review the broad vision for the IoT as it is shaped in various communities, examine the application of data analytics across IoT domains, provide a categorisation of analytic approaches and propose a layered taxonomy from IoT data to analytics. This taxonomy provides us with insights on the appropriateness of analytical techniques, which in turn shapes a survey of enabling technology and infrastructure for IoT analytics. Finally, we look at some tradeoffs for analytics in the IoT that can shape future research

    A Framework for Fast Classification Algorithms

    Get PDF
    Today, due to globalization of the world the size of data set is increasing, it is necessary to discover the knowledge. The discovery of knowledge can be typically in the form of association rules, classification rules, clustering, discovery of frequent episodes and deviation detection. Fast and accurate classifiers for large databases are an important task in data mining. There is growing evidence that integrating classification and association rules mining, classification approaches based on heuristic, greedy search like decision tree induction. Emerging associative classification algorithms have shown good promises on producing accurate classifiers. In this paper we focus on performance of associative classification and present a parallel model for classifier building. For classifier building some parallel-distributed algorithms have been proposed for decision tree induction but so far no such work has been reported for associative classification

    A Disease Diagnosis and Treatment Recommendation System Based on Big Data Mining and Cloud Computing

    Full text link
    It is crucial to provide compatible treatment schemes for a disease according to various symptoms at different stages. However, most classification methods might be ineffective in accurately classifying a disease that holds the characteristics of multiple treatment stages, various symptoms, and multi-pathogenesis. Moreover, there are limited exchanges and cooperative actions in disease diagnoses and treatments between different departments and hospitals. Thus, when new diseases occur with atypical symptoms, inexperienced doctors might have difficulty in identifying them promptly and accurately. Therefore, to maximize the utilization of the advanced medical technology of developed hospitals and the rich medical knowledge of experienced doctors, a Disease Diagnosis and Treatment Recommendation System (DDTRS) is proposed in this paper. First, to effectively identify disease symptoms more accurately, a Density-Peaked Clustering Analysis (DPCA) algorithm is introduced for disease-symptom clustering. In addition, association analyses on Disease-Diagnosis (D-D) rules and Disease-Treatment (D-T) rules are conducted by the Apriori algorithm separately. The appropriate diagnosis and treatment schemes are recommended for patients and inexperienced doctors, even if they are in a limited therapeutic environment. Moreover, to reach the goals of high performance and low latency response, we implement a parallel solution for DDTRS using the Apache Spark cloud platform. Extensive experimental results demonstrate that the proposed DDTRS realizes disease-symptom clustering effectively and derives disease treatment recommendations intelligently and accurately

    cSELENE: Privacy Preserving Query Retrieval System on Heterogeneous Cloud Data

    Full text link
    While working in collaborative team elsewhere sometimes the federated (huge) data are from heterogeneous cloud vendors. It is not only about the data privacy concern but also about how can those federated data can be querying from cloud directly in fast and securely way. Previous solution offered hybrid cloud between public and trusted private cloud. Another previous solution used encryption on MapReduce framework. But the challenge is we are working on heterogeneous clouds. In this paper, we present a novel technique for querying with privacy concern. Since we take execution time into account, our basic idea is to use the data mining model by partitioning the federated databases in order to reduce the search and query time. By using model of the database it means we use only the summary or the very characteristic patterns of the database. Modeling is the Preserving Privacy Stage I, since by modeling the data is being symbolized. We implement encryption on the database as preserving privacy Stage II. Our system, called "cSELENE" (stands for "cloud SELENE"), is designed to handle federated data on heterogeneous clouds: AWS, Microsoft Azure, and Google Cloud Platform with MapReduce technique. In this paper we discuss preserving-privacy system and threat model, the format of federated data, the parallel programming (GPU programming and shared/memory systems), the parallel and secure algorithm for data mining model in distributed cloud, the cloud infrastructure/architecture, and the UIX design of the cSELENE system. Other issues such as incremental method and the secure design of cloud architecture system (Virtual Machines across platform design) are still open to discuss. Our experiments should demonstrate the validity and practicality of the proposed high performance computing scheme.Comment: The First International Workshop on Learning From Limited or Noisy Data for Information Retrieval (LND4IR), Ann Arbor, Michigan, USA, July 2018 (SIGIR 2018), 6 page
    corecore