3,145 research outputs found

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    Shipbuilding 4.0 Index Approaching Supply Chain

    Get PDF
    The shipbuilding industry shows a special interest in adapting to the changes proposed by the industry 4.0. This article bets on the development of an index that indicates the current situation considering that supply chain is a key factor in any type of change, and at the same time it serves as a control tool in the implementation of improvements. The proposed indices provide a first definition of the paradigm or paradigms that best fit the supply chain in order to improve its sustainability and a second definition, regarding the key enabling technologies for Industry 4.0. The values obtained put shipbuilding on the road to industry 4.0 while suggesting categorized planning of technologies

    New directions in mobile, hybrid, and heterogeneous clouds for cyberinfrastructures

    Get PDF
    With the increasing availability of mobile devices and data generated by end-users, scientific instruments and simulations solving many of our most important scientific and engineering problems require innovative technical solutions. These solutions should provide the whole chain to process data and services from the mobile users to the cloud infrastructure, which must also integrate heterogeneous clouds to provide availability, scalability, and data privacy. This special issue presents the results of particular research works showing advances on mobile, hybrid, and heterogeneous clouds for modern cyberinfrastructures

    Robust Learning Enabled Intelligence for the Internet-of-Things: A Survey From the Perspectives of Noisy Data and Adversarial Examples

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThe Internet-of-Things (IoT) has been widely adopted in a range of verticals, e.g., automation, health, energy and manufacturing. Many of the applications in these sectors, such as self-driving cars and remote surgery, are critical and high stakes applications, calling for advanced machine learning (ML) models for data analytics. Essentially, the training and testing data that are collected by massive IoT devices may contain noise (e.g., abnormal data, incorrect labels and incomplete information) and adversarial examples. This requires high robustness of ML models to make reliable decisions for IoT applications. The research of robust ML has received tremendous attentions from both academia and industry in recent years. This paper will investigate the state-of-the-art and representative works of robust ML models that can enable high resilience and reliability of IoT intelligence. Two aspects of robustness will be focused on, i.e., when the training data of ML models contains noises and adversarial examples, which may typically happen in many real-world IoT scenarios. In addition, the reliability of both neural networks and reinforcement learning framework will be investigated. Both of these two machine learning paradigms have been widely used in handling data in IoT scenarios. The potential research challenges and open issues will be discussed to provide future research directions.Engineering and Physical Sciences Research Council (EPSRC
    • …
    corecore