35 research outputs found

    Design of Network Coding Schemes and RF Energy Transfer in Wireless Communication Networks

    Get PDF
    This thesis focuses on the design of network coding schemes and radio frequency (RF) energy transfer in wireless communication networks. During the past few years, network coding has attracted significant attention because of its capability to transmit maximum possible information in a network from multiple sources to multiple destinations via a relay. Normally, the destinations are only able to decode the information with sufficient prior knowledge. To enable the destinations to decode the information in the cases with less/no prior knowledge, a pattern of nested codes with multiple interpretations using binary convolutional codes is constructed in a multi-source multi-destination wireless relay network. Then, I reconstruct nested codes with convolutional codes and lattice codes in multi-way relay channels to improve the spectrum efficiency. Moreover, to reduce the high decoding complexity caused by the adopted convolutional codes, a network coded non-binary low-density generator matrix (LDGM) code structure is proposed for a multi-access relay system. Another focus of this thesis is on the design of RF-enabled wireless energy transfer (WET) schemes. Much attention has been attracted by RF-enabled WET technology because of its capability enabling wireless devices to harvest energy from wireless signals for their intended applications. I first configure a power beacon (PB)-assisted wireless-powered communication network (PB-WPCN), which consists of a set of hybrid access point (AP)-source pairs and a PB. Both cooperative and non-cooperative scenarios are considered, based on whether the PB is cooperative with the APs or not. Besides, I develop a new distributed power control scheme for a power splitting-based interference channel (IFC) with simultaneous wireless information and power transfer (SWIPT), where the considered IFC consists of multiple source-destination pairs

    Compute-and-Forward Relay Networks with Asynchronous, Mobile, and Delay-Sensitive Users

    Get PDF
    We consider a wireless network consisting of multiple source nodes, a set of relays and a destination node. Suppose the sources transmit their messages simultaneously to the relays and the destination aims to decode all the messages. At the physical layer, a conventional approach would be for the relay to decode the individual message one at a time while treating rest of the messages as interference. Compute-and-forward is a novel strategy which attempts to turn the situation around by treating the interference as a constructive phenomenon. In compute-and-forward, each relay attempts to directly compute a combination of the transmitted messages and then forwards it to the destination. Upon receiving the combinations of messages from the relays, the destination can recover all the messages by solving the received equations. When identical lattice codes are employed at the sources, error correction to integer combination of messages is a viable option by exploiting the algebraic structure of lattice codes. Therefore, compute-and-forward with lattice codes enables the relay to manage interference and perform error correction concurrently. It is shown that compute-and-forward exhibits substantial improvement in the achievable rate compared with other state-of-the-art schemes for medium to high signal-to-noise ratio regime. Despite several results that show the excellent performance of compute-and-forward, there are still important challenges to overcome before we can utilize compute-and- forward in practice. Some important challenges include the assumptions of \perfect timing synchronization "and \quasi-static fading", since these assumptions rarely hold in realistic wireless channels. So far, there are no conclusive answers to whether compute-and-forward can still provide substantial gains even when these assumptions are removed. When lattice codewords are misaligned and mixed up, decoding integer combination of messages is not straightforward since the linearity of lattice codes is generally not invariant to time shift. When channel exhibits time selectivity, it brings challenges to compute-and-forward since the linearity of lattice codes does not suit the time varying nature of the channel. Another challenge comes from the emerging technologies for future 5G communication, e.g., autonomous driving and virtual reality, where low-latency communication with high reliability is necessary. In this regard, powerful short channel codes with reasonable encoding/decoding complexity are indispensable. Although there are fruitful results on designing short channel codes for point-to-point communication, studies on short code design specifically for compute-and-forward are rarely found. The objective of this dissertation is threefold. First, we study compute-and-forward with timing-asynchronous users. Second, we consider the problem of compute-and- forward over block-fading channels. Finally, the problem of compute-and-forward for low-latency communication is studied. Throughout the dissertation, the research methods and proposed remedies will center around the design of lattice codes in order to facilitate the use of compute-and-forward in the presence of these challenges

    A Novel User Pairing Scheme for Functional Decode-and-Forward Multi-way Relay Network

    Full text link
    In this paper, we consider a functional decode and forward (FDF) multi-way relay network (MWRN) where a common user facilitates each user in the network to obtain messages from all other users. We propose a novel user pairing scheme, which is based on the principle of selecting a common user with the best average channel gain. This allows the user with the best channel conditions to contribute to the overall system performance. Assuming lattice code based transmissions, we derive upper bounds on the average common rate and the average sum rate with the proposed pairing scheme. Considering M-ary quadrature amplitude modulation with square constellation as a special case of lattice code transmission, we derive asymptotic average symbol error rate (SER) of the MWRN. We show that in terms of the achievable rates, the proposed pairing scheme outperforms the existing pairing schemes under a wide range of channel scenarios. The proposed pairing scheme also has lower average SER compared to existing schemes. We show that overall, the MWRN performance with the proposed pairing scheme is more robust, compared to existing pairing schemes, especially under worst case channel conditions when majority of users have poor average channel gains.Comment: 30 pages, 6 figures, submitted for journal publicatio

    Analysis and design of physical-layer network coding for relay networks

    Full text link
    Physical-layer network coding (PNC) is a technique to make use of interference in wireless transmissions to boost the system throughput. In a PNC employed relay network, the relay node directly recovers and transmits a linear combination of its received messages in the physical layer. It has been shown that PNC can achieve near information-capacity rates. PNC is a new information exchange scheme introduced in wireless transmission. In practice, transmitters and receivers need to be designed and optimized, to achieve fast and reliable information exchange. Thus, we would like to ask: How to design the PNC schemes to achieve fast and reliable information exchange? In this thesis, we address this question from the following works: Firstly, we studied channel-uncoded PNC in two-way relay fading channels with QPSK modulation. The computation error probability for computing network coded messages at the relay is derived. We then optimized the network coding functions at the relay to improve the error rate performance. We then worked on channel coded PNC. The codes we studied include classical binary code, modern codes, and lattice codes. We analyzed the distance spectra of channel-coded PNC schemes with classical binary codes, to derive upper bounds for error rates of computing network coded messages at the relay. We designed and optimized irregular repeat-accumulate coded PNC. We modified the conventional extrinsic information transfer chart in the optimization process to suit the superimposed signal received at the relay. We analyzed and designed Eisenstein integer based lattice coded PNC in multi-way relay fading channels, to derive error rate performance bounds of computing network coded messages. Finally we extended our work to multi-way relay channels. We proposed a opportunistic transmission scheme for a pair-wise transmission PNC in a single-input single-output multi-way relay channel, to improve the sum-rate at the relay. The error performance of computing network coded messages at the relay is also improved. We optimized the uplink/downlink channel usage for multi-input multi-output multi-way relay channels with PNC to maximize the degrees of freedom capacity. We also showed that the system sum-rate can be further improved by a proposed iterative optimization algorithm

    Coding for Cooperative Communications

    Get PDF
    The area of cooperative communications has received tremendous research interest in recent years. This interest is not unwarranted, since cooperative communications promises the ever-so-sought after diversity and multiplexing gains typically associated with multiple-input multiple-output (MIMO) communications, without actually employing multiple antennas. In this dissertation, we consider several cooperative communication channels, and for each one of them, we develop information theoretic coding schemes and derive their corresponding performance limits. We next develop and design practical coding strategies which perform very close to the information theoretic limits. The cooperative communication channels we consider are: (a) The Gaussian relay channel, (b) the quasi-static fading relay channel, (c) cooperative multiple-access channel (MAC), and (d) the cognitive radio channel (CRC). For the Gaussian relay channel, we propose a compress-forward (CF) coding strategy based on Wyner-Ziv coding, and derive the achievable rates specifically with BPSK modulation. The CF strategy is implemented with low-density parity-check (LDPC) and irregular repeataccumulate codes and is found to operate within 0.34 dB of the theoretical limit. For the quasi-static fading relay channel, we assume that no channel state information (CSI) is available at the transmitters and propose a rateless coded protocol which uses rateless coded versions of the CF and the decode-forward (DF) strategy. We implement the protocol with carefully designed Raptor codes and show that the implementation suffers a loss of less than 10 percent from the information theoretical limit. For the MAC, we assume quasi-static fading, and consider cooperation in the low-power regime with the assumption that no CSI is available at the transmitters. We develop cooperation methods based on multiplexed coding in conjunction with rateless codes and find the achievable rates and in particular the minimum energy per bit to achieve a certain outage probability. We then develop practical coding methods using Raptor codes, which performs within 1.1 dB of the performance limit. Finally, we consider a CRC and develop a practical multi-level dirty-paper coding strategy using LDPC codes for channel coding and trellis-coded quantization for source coding. The designed scheme is found to operate within 0.78 dB of the theoretical limit. By developing practical coding strategies for several cooperative communication channels which exhibit performance close to the information theoretic limits, we show that cooperative communications not only provide great benefits in theory, but can possibly promise the same benefits when put into practice. Thus, our work can be considered a useful and necessary step towards the commercial realization of cooperative communications

    On Non-Binary Constellations for Channel Encoded Physical Layer Network Coding

    Get PDF
    This thesis investigates channel-coded physical layer network coding, in which the relay directly transforms the noisy superimposed channel-coded packets received from the two end nodes, to the network-coded combination of the source packets. This is in contrast to the traditional multiple-access problem, in which the goal is to obtain each message explicitly at the relay. Here, the end nodes AA and BB choose their symbols, SAS_A and SBS_B, from a small non-binary field, F\mathbb{F}, and use non-binary PSK constellation mapper during the transmission phase. The relay then directly decodes the network-coded combination aSA+bSB{aS_A+bS_B} over F\mathbb{F} from the noisy superimposed channel-coded packets received from two end nodes. Trying to obtain SAS_A and SBS_B explicitly at the relay is overly ambitious when the relay only needs aSB+bSBaS_B+bS_B. For the binary case, the only possible network-coded combination, SA+SB{S_A+S_B} over the binary field, does not offer the best performance in several channel conditions. The advantage of working over non-binary fields is that it offers the opportunity to decode according to multiple decoding coefficients (a,b)(a,b). As only one of the network-coded combinations needs to be successfully decoded, a key advantage is then a reduction in error probability by attempting to decode against all choices of decoding coefficients. In this thesis, we compare different constellation mappers and prove that not all of them have distinct performance in terms of frame error rate. Moreover, we derive a lower bound on the frame error rate performance of decoding the network-coded combinations at the relay. Simulation results show that if we adopt concatenated Reed-Solomon and convolutional coding or low density parity check codes at the two end nodes, our non-binary constellations can outperform the binary case significantly in the sense of minimizing the frame error rate and, in particular, the ternary constellation has the best frame error rate performance among all considered cases

    Trellis- and network-coded modulation for decode-and-forward two-way relaying over time-varying channels

    No full text
    We present a bandwidth-efficient joint channel coding-modulation scheme conceived for the broadcast channel (BC) of Decode-and-forward Two-way Relaying (DF-TWR), where Trellis-coded modulation (TCM) is intrinsically amalgamated with network-coded modulation (NCM) for achieving both a channel coding gain and a high throughput. We conceive a low-complexity receiver algorithm for our joint Trellis- and Network-coded modulation (TC-NCM) scheme, which applies decoding and demodulation simultaneously, without the need to first demodulate the signal before decoding, as in the traditional solutions. As a further contribution, the TC-NCM scheme is intrinsically amalgamated with adaptive transceiver techniques. We then further investigate the performance of our near-instantaneously adaptive discrete-rate TC-NC-QAM/PSK scheme. Both simulation results and numerical analysis are presented, which are compared to the performance of traditional NCM schemes. The results show that our scheme not only increases the achievable transmission rate, but also improves the reliability, yet it is of modest complexity
    corecore