43 research outputs found

    A novel conservative chaos driven dynamic DNA coding for image encryption

    Full text link
    In this paper, we propose a novel conservative chaotic standard map-driven dynamic DNA coding (encoding, addition, subtraction and decoding) for the image encryption. The proposed image encryption algorithm is a dynamic DNA coding algorithm i.e., for the encryption of each pixel different rules for encoding, addition/subtraction, decoding etc. are randomly selected based on the pseudorandom sequences generated with the help of the conservative chaotic standard map. We propose a novel way to generate pseudo-random sequences through the conservative chaotic standard map and also test them rigorously through the most stringent test suite of pseudo-randomness, the NIST test suite, before using them in the proposed image encryption algorithm. Our image encryption algorithm incorporates a unique feed-forward and feedback mechanisms to generate and modify the dynamic one-time pixels that are further used for the encryption of each pixel of the plain image, therefore, bringing in the desired sensitivity on plaintext as well as ciphertext. All the controlling pseudorandom sequences used in the algorithm are generated for a different value of the parameter (part of the secret key) with inter-dependency through the iterates of the chaotic map (in the generation process) and therefore possess extreme key sensitivity too. The performance and security analysis has been executed extensively through histogram analysis, correlation analysis, information entropy analysis, DNA sequence-based analysis, perceptual quality analysis, key sensitivity analysis, plaintext sensitivity analysis, etc., The results are promising and prove the robustness of the algorithm against various common cryptanalytic attacks.Comment: 29 pages, 5 figures, 15 table

    Hybrid chaos-based image encryption algorithm using Chebyshev chaotic map with deoxyribonucleic acid sequence and its performance evaluation

    Get PDF
    The media content shared on the internet has increased tremendously nowadays. The streaming service has major role in contributing to internet traffic all over the world. As the major content shared are in the form of images and rapid increase in computing power a better and complex encryption standard is needed to protect this data from being leaked to unauthorized person. Our proposed system makes use of chaotic maps, deoxyribonucleic acid (DNA) coding and ribonucleic acid (RNA) coding technique to encrypt the image. As videos are nothing but collection of images played at the rate of minimum 30 frames/images per second, this methodology can also be used to encrypt videos. The complexity and dynamic nature of chaotic systems makes decryption of content by unauthorized personal difficult. The hybrid usage of chaotic systems along with DNA and RNA sequencing improves the encryption efficiency of the algorithm and also makes it possible to decrypt the images at the same time without consuming too much of computation power

    An Adaptive Image Encryption Scheme Guided by Fuzzy Models

    Full text link
    A new image encryption scheme using the advanced encryption standard (AES), a chaotic map, a genetic operator, and a fuzzy inference system is proposed in this paper. In this work, plain images were used as input, and the required security level was achieved. Security criteria were computed after running a proposed encryption process. Then an adaptive fuzzy system decided whether to repeat the encryption process, terminate it, or run the next stage based on the achieved results and user demand. The SHA-512 hash function was employed to increase key sensitivity. Security analysis was conducted to evaluate the security of the proposed scheme, which showed it had high security and all the criteria necessary for a good and efficient encryption algorithm were met. Simulation results and the comparison of similar works showed the proposed encryptor had a pseudo-noise output and was strongly dependent upon the changing key and plain image.Comment: Iranian Journal of Fuzzy Systems (2023

    A Novel Privacy Approach of Digital Aerial Images Based on Mersenne Twister Method with DNA Genetic Encoding and Chaos

    Get PDF
    Aerial photography involves capturing images from aircraft and other flying objects, including Unmanned Aerial Vehicles (UAV). Aerial images are used in many fields and can contain sensitive information that requires secure processing. We proposed an innovative new cryptosystem for the processing of aerial images utilizing a chaos-based private key block cipher method so that the images are secure even on untrusted cloud servers. The proposed cryptosystem is based on a hybrid technique combining the Mersenne Twister (MT), Deoxyribonucleic Acid (DNA), and Chaotic Dynamical Rossler System (MT-DNA-Chaos) methods. The combination of MT with the four nucleotides and chaos sequencing creates an enhanced level of security for the proposed algorithm. The system is tested at three separate phases. The combined effects of the three levels improve the overall efficiency of the randomness of data. The proposed method is computationally agile, and offered more security than existing cryptosystems. To assess, this new system is examined against different statistical tests such as adjacent pixels correlation analysis, histogram consistency analyses and its variance, visual strength analysis, information randomness and uncertainty analysis, pixel inconsistency analysis, pixels similitude analyses, average difference, and maximum difference. These tests confirmed its validity for real-time communication purposes

    Analysis and review of the possibility of using the generative model as a compression technique in DNA data storage: review and future research agenda

    Get PDF
    The amount of data in this world is getting higher, and overwriting technology also has severe challenges. Data growth is expected to grow to 175 ZB by 2025. Data storage technology in DNA is an alternative technology with potential in information storage, mainly digital data. One of the stages of storing information on DNA is synthesis. This synthesis process costs very high, so it is necessary to integrate compression techniques for digital data to minimize the costs incurred. One of the models used in compression techniques is the generative model. This paper aims to see if compression using this generative model allows it to be integrated into data storage methods on DNA. To this end, we have conducted a Systematic Literature Review using the PRISMA method in selecting papers. We took the source of the papers from four leading databases and other additional databases. Out of 2440 papers, we finally decided on 34 primary papers for detailed analysis. This systematic literature review (SLR) presents and categorizes based on research questions, namely discussing machine learning methods applied in DNA storage, identifying compression techniques for DNA storage, knowing the role of deep learning in the compression process for DNA storage, knowing how generative models are associated with deep learning, knowing how generative models are applied in the compression process, and knowing latent space can be formed. The study highlights open problems that need to be solved and provides an identified research direction

    Bl-IEA: a Bit-Level Image Encryption Algorithm for cognitive services in Intelligent Transportation Systems

    Get PDF
    In Intelligent Transportation Systems, images are the main data sources to be analyzed for providing intelligent and precision cognitive services. Therefore, how to protect the privacy of sensitive images in the process of information transmission has become an important research issue, especially in future no non-private data era. In this article, we design the Rearrangement-Arnold Cat Map (R-ACM) to disturb the relationship between adjacent pixels and further propose an efficient Bit-level Image Encryption Algorithm(Bl-IEA) based on R-ACM. Experiments show that the correlation coefficients of two adjacent pixels are 0.0022 in the horizontal direction, -0.0105 in the vertical direction, and -0.0035 in the diagonal direction respectively, which are obviously weaker than that of the original image with high correlations of adjacent pixels. What's more, the NPCR is 0.996120172, and the UACI is 0.334613406, which indicate that Bl-IEA has stronger ability to resist different attacks compared with other solutions. Especially, the lower time complexity and only one round permutation make it particularly suitable to be used in the time-limited intelligent transportation field

    A Fingerprint Image Encryption Scheme Based on Hyperchaotic Rössler Map

    Get PDF
    Currently, biometric identifiers have been used to identify or authenticate users in a biometric system to increase the security in access control systems. Nevertheless, there are several attacks on the biometric system to steal and recover the user’s biometric trait. One of the most powerful attacks is extracting the fingerprint pattern when it is transmitted over communication lines between modules. In this paper, we present a novel fingerprint image encryption scheme based on hyperchaotic Rössler map to provide high security and secrecy in user’s biometric trait, avoid identity theft, and increase the robustness of the biometric system. A complete security analysis is presented to justify the secrecy of the biometric trait by using our proposed scheme at statistical level with 100% of NPCR, low correlation, and uniform histograms. Therefore, it can be used in secure biometric access control systems
    corecore